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● Policy Model (Controller)
○ Make decision based on the current state and provide the next action

● Reward Model
○ Estimate reward / value to train the policy

● World model (Simulator)
○ Simulate the environment
○ Model-based RL



Papers
● Policy Model

○ RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

○ Do As I Can, Not As I Say: Grounding Language in Robotic Affordances 

● Value Function

○ Vision Language Models are In-Context Value Learners

● Simulator

○ Genie: Generative Interactive Environments
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https://arxiv.org/pdf/2307.15818
https://say-can.github.io/
https://generative-value-learning.github.io/
https://arxiv.org/pdf/2402.15391
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● LLM may respond with a reasonable narrative

● LLM’s response without the context of what the robot is capable of given its abilities, 

the current state and the environment

● How can embodied agents extract and harness the knowledge of LLMs for physically 

grounded tasks? 

Motivation



Method Overview

P 8

● Do As I Can, Not As I Say (SayCan)

● Low-level controller:

○ The robot equipped with atomic skills

● High-level planner:

○ LLM to split high-level instruction into a series of skills

○ Select the optimal skill based on:

■ Scoring of LLM: probability that a skill is useful for the instruction

■ Affordance function: probability of successfully executing an individual skill



Connecting Large Language Models to Robots 
● Prompting engineering: may produce inadmissible actions or language that is not 

formatted in a way that is easy to parse into individual steps

● Scoring language models
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1. calculate probability for each skill
● Scoring of LLM: how the skill makes progress 

toward completing the high-level instruction

● Affordance function: make the LLM aware of 

the current state

2. select optimal skill

SayCan Pipeline
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SayCan Pipeline

3. append skill to i and repeat



SayCan Pipeline

● Affordance model

○ temporal-difference-based RL

● Policy of low-level control

○ image-based BC

○ RL

Universal Sentence Encoder



Results
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Results
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● PaLM-SayCan and the underlying 

policies generalize reasonably well to 

the full kitchen

● The necessity of the affordance 

grounding

● Larger models perform better
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About RT1
● End-to-end vision-language-action (VLA) model, 35M

● A large multi-task backbone model on data consisting of a wide variety of robotic tasks 
(13 robots, containing ∼130k episodes and over 700 tasks) 

● Action tokenization + cross-entropy loss
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Motivation for RT2

● General robotic model / generalist robots

○ Map robot observations to actions end-to-end

○ Open-ended task-agnostic training

■ Collecting millions of robotic interaction trials

■ Enjoy the benefits of pretraining on Internet-scale data



Method
Internet-scale vision-language tasks

Robot action task

Robot action task in VQA format

Tokenizing the actions into text tokens
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Method

● 1st: Adapt a previously proposed VLM to act as the VLA model 

● 2nd: Tokenizing the actions into text tokens and creating “multimodal sentences”

● 3rd: Co-Fine-Tuning, output low-level robot actions + open-vocabulary VQA



Pre-Trained Vision-Language Models (PaLM-E)
● PaLM + Embodied observation = PaLM-E

● 540B LLM + 22B ViT

● High-level planner



Action Tokenization

● Continuous dimensions are discretized into 256 bins uniformly

● Action space

○ 6-DoF positional and rotational displacement of the robot end-effector

○ the level of extension of the robot gripper

○ a special discrete token for terminating the episode

● Overwrite the least frequently used tokens to represent the action vocabulary



Co-Fine-Tuning

● Datasets:

○ Robotics data (RT1)

○ Web data (PaLI-X, PaLM-E)

● Increasing the sampling weight on the robot dataset

● Output Constraint:

○ Only sampling valid action tokens
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Experiments
I. How does RT-2 perform on seen tasks and more importantly, generalize over new 

environments? 

II. Can we observe and measure any emergent capabilities of RT-2?

III. How does the generalization vary with parameter count and other design decisions?

IV. Can RT-2 exhibit signs of chain-of-thought reasoning similarly to vision-language 

models? 
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Results - I
● The strength of VLA models lies in transferring more general semantic concepts from the 

Internet-scale pretraining data
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Results - II
● Emergent: to evaluate the degree to which RT2 can enable new capabilities beyond those 

demonstrated in the robot data by transferring knowledge from the web
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Results – III & IV



Discussions 
● Question1: Compared two-stage framework with the end-to-end VLA model, which one is 

better?

● Question2: Challenges stemming from the scarcity of action-labeled robotic datasets.



Discussions 
● Compared two-stage framework with the end-to-end VLA model, which one is better?

○ Two-stage framework

■ hierarchically decompose the long-horizon tasks into a sequence of sub-goals 

■ easy to train planner and controller separately

○ VLA

■ no need to train an additional low-level controller by RL or BC

■ require more training data

● Challenges stemming from the scarcity of action-labeled robotic datasets.

○ Learn general knowledge (world dynamic, temporal reasoning…) from pretraining

■ more pretraining task: video generation…

■ more datasets: human-object interaction videos, simulation, multiview images…
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● Generative Value Learning (GVL) auto-regressively predicts task completion 
percentage over shuffled frames, enabling impressive in-context value learning. 



● SOTA VLMs have exhibited strong spatial reasoning and temporal understanding 
capabilities, allowing them to generalize to novel scenarios.

● Large transformer-based VLMs have the requisite context window to reason over 

long historical information.

● VLMs commit to their own outputs as inputs for subsequent predictions, imposing 

consistency constraints on long generations.
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Motivation



● Autoregressive value prediction → produce globally consistent estimates

P 33

Methodology



● Input observation shuffling → avoid the short-cut solution of outputting 
monotonically increasing values
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Methodology
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Methodology
● The full prompt provided to Gemini-1.5-Pro for GVL predictions



● In-context value learning → improve value accuracy with in-context examples

● Question 1: Can we use other approaches to improve VLMs for better value 
prediction? P 36

Methodology



1. Can GVL produce zero-shot value predictions for a broad range of tasks and 
embodiments? 

2. Can GVL improve from in-context learning? 

3. Can GVL be used for other downstream robot learning applications?
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Experimental Questions



● Value-Order Correlation (VOC) computes the rank correlation between the 
predicted values and the chronological order of the input expert video:

VOC ranges from −1 to 1, with 1 indicates perfect alignment between two orderings.
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Evaluation Metric



● Expert quality demonstrations, by construction, have values that monotonically 
increase with time. → high VOC scores

● Low-quality trajectories should often contain high repetition of visually similar 
frames due to the presence of redundant, re-attempt actions or poorly-placed 
cameras. → low VOC scores

● Question 2: What are the potential drawbacks of VOC?
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Evaluation Metric



● GVL generates VOC scores that heavily skew to the right, indicating that it is able to 
zero-shot recover the temporal structure hidden in shuffled demonstration videos.
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Large-scale real-world evaluation (Q1)



● Few-shot in-context learning. GVL is able to utilize its full context and exhibit 
strong generalization with up to 5 in-context trajectories.
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Multi-Modal In-Context Value Learning (Q2)



● Cross-embodiment in-context learning. GVL’s value predictions can be 
improved by examples from human videos.
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Multi-Modal In-Context Value Learning (Q2)



● Success detection.
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GVL Applications (Q3)



● Advantage-weighted regression (AWR) for real-world visuomotor control.

● AWR with GVL outperforms IL baselines when the predicted values have high VOCs.
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GVL Applications (Q3)



● Question 1: Can we fine-tune VLMs to perform better value predictions?

● Question 2: Periodic tasks such as wiping or stirring may be hard to discern with 

Value-Order Correlation. Can we design a better evaluation metric?
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Discussions
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● Genie is the first generative interactive environment trained in an unsupervised manner 
from unlabelled Internet videos. 



● There remains a gulf between the level of interactions and engagement of video 
generative models and language tools such as ChatGPT.

● Given a large corpus of videos from the Internet, we could not only train models 
capable of generating novel images or videos, but entire interactive experiences.

● This goal is achievale with latent actions, which can be learned from unlabelled 
Internet videos in an unsupervised manner.
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Motivation



● Model Components.
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Methodology



● ST-transformer architecture.
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Methodology



● Video Tokenizer.
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Methodology



● Latnet Action Model and Dynamics Model.
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Methodology



● Genie Inference.
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Methodology



● “Platforms” Dataset: We construct the Platformers dataset by filtering publicly 
available videos for keywords relating to platformers, yielding 55M 16s video clips at 
10FPS, with 160x90 resolution. The final dataset contains 6.8M 16s video clips (30k 
hours), within an order of magnitude of other popular Internet video datasets.

● “Robotics” Dataset: We also consider the robotics datasets used to train RT1 
(Brohan et al., 2023), combining their dataset of ∼130𝑘 robot demonstrations with a 
separate dataset of simulation data and the 209k episodes of real robot data from 
prior work (Kalashnikov et al., 2018). Note that we do not use actions from any of 
these datasets, and simply treat them as videos.
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Training Datasets



● Question 1: The advantages and future applications of Latent Actions?
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Experiments



● Qualitative Results of Platformers-trained model

P 57

Experiments



● Qualitative Results of Robotics-trained model
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Experiments



● Training Agents
○ Objective

■ If latent actions learnt from Internet 
videos can be used for imitating 
behaviors from unseen videos?

○ Details
■ Use a frozen LAM to label expert videos 

with discrete latent actions.
■ Train a policy that predicts the likelihood 

of a latent action given an observation.
■ Use a small dataset with ground-truth 

actions to fill in a mapping dictionary.
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Experiments



● Training Agents
○ Upper bound: 

■ an oracle behavioral cloning model 
that has access to expert actions. 

○ Lower bound: 
■ a random agent.

● Question 2: In addition to gaming agents, 
how can we use latent actions to train a 
generalist robot policy?
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Experiments



● Genie could be trained from an even larger proportion of Internet videos to 
simulate diverse, realistic, and imagined environments. 

● Given that the lack of rich and diverse environments is one of the key limitations in 
RL, Genie could unlock new paths to creating more generally capable agents.
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Future Direction



● Question 1: Advantages and future applications of Latent Actions?
○ Simulator

■ Unified control signal to interact with the simulator.
■ Leverage large-scale unlabelled data for self-supervised training.

○ Policy
■ Enable training of a generalizable policy model and possible 

cross-embodiment transfer.
■ Reduce spatial-temporal redundancy -> faster generation speed, longer 

generation sequence.

○ Reward Model
■ Measure the rationality of a long trajectory video with a compact sequence.
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Discussions



● Question 2: In addition to gaming agents, how can we use latent actions to train a 
generalist robot policy?

■ Robot action space has a higher degree of freedom.
■ Mapping between latent actions and real robot actions is not trivial.
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Discussions


