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Outline
● A Brief Overview of Method

● Discussion 1: Start from an empirical Finding from Experimental Results

○ We observe that different Amount of Supervision (AoS) may lead to 

performance variance among evaluation datasets.

○ We give an empirical outlook to quantify AoS through an intrinsic 

score-matching nature in CLIP objective.

● Discussion 2: An close look into the CLIP objective: symmetric InfoNCE

○ A theoretical equivalence to (inversed) optimal transport objective

○ A theoretical understanding of softmax temperature

○ The necessity of “Symmetric” in a theoretical perspective
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Method Overview
● Dataset Composition: (image, text) pairs

○ Search (image, text) pairs whose text includes one the query words 

occurring at least 100 times in English version of Wikipedia.

○ Filter the dataset:

■ 20,000 (images, text) pairs for each of the 50,000 query words.

■ This is to balance the supervision.

○ Using random crop augmentation.

● Image Encoder: ResNet, VIT, Text Encoder: Transformer

● Objective: Symmetric InfoNCE with learnable temperature.

○ It is targeted to align the embeddings of images and text.
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Discussion 1: A Finding in Experimental Results
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zero-shot CLIP v.s. linear probing a 
pretrained ResNet.

how many data are required for a few-shot 
CLIP to match zero-shot 

Logistic regression on CLIP feature v.s. 
SOTA representation.

● The performance of CLIP varies among evaluation datasets.

● The author suspects this is induced by the different Amount of Supervision (AoS).

● We ask a question: Is it possible to validate this congestion?

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models 
from natural language supervision. In International conference on machine learning (pp. 8748-8763). PMLR.



Score Match Nature induced by Polysemy
● To answer this question, we need some preliminaries on score matching: 

○ Recall the training objective of a score-matching model 

○ The interpretation is to require a model to predict all Gaussian noisy version of a data to its clear version.

○ Recall a property in score matching: a high loss of a data indicates that it is in high probability region, 

otherwise it is in low probability region.

■ This is because the network can easily denoise an isolated data, but it is hard to denoise a mixed one. 

(one noise refers to multiple clear ones.)

● In this discussion, we reason that CLIP has an intrinsic score matching nature due to the polysemy:

○ Polysemy here refers that one image can refer to infinite text.

○ Due the polysemy, we can assume each text embedding is a noisy version of an ideal text embedding, and the 

model is required to learn the expectation of the noisy embedding, which is the ideal text embedding.

P 5Song, Y., & Ermon, S. (2019). Generative modeling by estimating 
gradients of the data distribution. Advances in neural information 
processing systems, 32.



Proof Sketch: Using a Minor Assumption on Data
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Score Matching Gives Estimation of AoS
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● As we have shown the CLIP objective take a intrinsic score-matching, we can utilize a nice property of score 

matching.

● As reasoned before, in score matching perspective, a small loss of a training (image, text) indicates small AoS, 

while a large loss indicates the larger one. 

● This might be a new interpretation to the Modality Gap phenomenon:

○ “modality gap” is a phenomenon that the trained text embedding and image embedding do not necessarily 

have a high cosine similarity.

■ Some work explain in Cone effect and local minimum

○ At the angle of score matching, modality gap is an empirical risk, which is a loss by taking expectation on 

the similarity between all possible noisy data and the clean one.

● Furthermore, nontrivially, one can also run Langevin Dynamics to sample the embedding distribution of training 

data, which gives quantitative measure of AoS.

Shi, P., Welle, M. C., Björkman, M., & Kragic, D. (2023). Towards 
understanding the modality gap in CLIP. In ICLR 2023 Workshop on 
Multimodal Representation Learning: Perks and Pitfalls.

Liang, V. W., Zhang, Y., Kwon, Y., Yeung, S., & Zou, J. Y. (2022). Mind the gap: 
Understanding the modality gap in multi-modal contrastive representation learning. 
Advances in Neural Information Processing Systems, 35, 17612-17625.



Discussion 2: Symmetric InfoNCE
● The loss of CLIP is a combination of symmetric InfoNCEs.

● Here, z^I and z^T means the image and text embedding respectively. /tau is the 

softmax temperature.

● Without loss of generality, we analyze L_I:

○ Q1: Why using log likelihood, and softmax?

○ Q2: Why softmax temperature is initialized by a very small number in 

CLIP.

○ Q3: Why symmetric? How about just using L_I.
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To answer these questions,  we introduce the objective of Optimal Transport:

● Given two marginal distributions and their transport cost, what is the 
transport plan with a minimum cost?

● An inverse one: Given a transport plan and marginals, what is the mini cost?

To solve the inverse Optimal Transport, we have A bilevel minimization Objective:
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Preliminary: Optimal Transport Objective

Where P tilde here refers to the observed transport plans, P theta refers to the 
parameterized plan guided by a learned transport cost with a marginal constraint.



Q1:The Equivalence Between InfoNCE and IOT
● The proof is trivial.

● The derivation only constraints transport 

plan to one marginal distribution, i.e., image 

marginal distribution.

● We observe that 

○ Softmax serves as a regularization in 

OT.

○ Log likelihood comes from parts of 

outer KL divergence.

○ One more question: Why KL? 

■ An interesting direction to dig.
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Should be n here

Shi, L., Zhang, G., Zhen, H., Fan, J., & Yan, J. (2023, July). Understanding and 
generalizing contrastive learning from the inverse optimal transport perspective. In 
International conference on machine learning (pp. 31408-31421). PMLR.



● We declare that Softmax regularization should be small but not zero.

● From Q1, Softmax Temperature is exactly the entropy regularization coefficient.

● Ideally, there is no need for a regularization in contrastive learning, 

○ The matching should be as sharp as possible to ensure discriminess.

● But we cannot cancel this regularization, since it is useful in optimization

○ Negative \epsilon H(x) Ensuring \epsilon-strong convexity.
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Q2: Softmax only Benefits Optimization

Shi, L., Zhang, G., Zhen, H., Fan, J., & Yan, J. (2023, July). Understanding and generalizing 
contrastive learning from the inverse optimal transport perspective. In International conference on 
machine learning (pp. 31408-31421). PMLR.



Q3: The Necessity of Symmetric Loss
● Recall CLIP is a symmetric InfoNCE.

● By looking into the equivalent OT objective, L_I ensure the marginal of images, L_t 

ensure the marginal of text.

● Then the necessity of a symmetric InfoNCE is clear:
○ Intuitively, if only ensuring image marginal, it does not prohibit one text matches to two 

images.

○ A symmetric loss ensures both image and text marginal, ensuring a one-one image-text 

mapping, and intuitively inducing better discriminess.
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U here follows either image 
marginal, or text marginal.



Take-home Messages
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● With minor assumptions, theoretically we show the CLIP objective has an 

intrinsic score-matching nature. The loss value of a training (image-text) pair 

has a potential to evaluate the amount of supervision, which induces 

performance variance in evaluation datasets.

● We show the CLIP objective is theoretically equivalent to a combination of 

two inverse optimal transport objectives. With this insight, we show a small 

temperature ensures hard matching and strong convexity. We also show the 

necessity of a symmetric loss, which ensures both image and text marginal 

distribution.
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Key innovations

● Bridge powerful pretrained vision-only and language-only models

● Handle sequences of arbitrarily interleaved visual and textual data

● Seamlessly ingest images or videos as inputs
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Few-shot prompting
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Video Understanding
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Dialogue
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Next-token prediction task
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● Flamingo models the likelihood of text y conditioned on interleaved images and 

videos x, and past text y<l.



Mixture of vision and language datasets

P 20

● Multi-objective training and optimisation strategy

● Interleaved image and text dataset.

● Image-text pairs.

● Video-text pairs.



Flamingo architecture overview
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Perceiver Resampler
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GATED XATTN-DENSE layers
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Interleaved visual data and text support
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Experiments
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OpenFlamingo
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Awadalla, Anas, et al. "Openflamingo: An open-source framework for training large autoregressive vision-language models." arXiv preprint 
arXiv:2308.01390 (2023).



Discussions

Limitations:
● Inheriting Weaknesses of Language Models.

● Poor Classification Performance

● Limitations of In-Context Learning

Conclusion:
● Flamingo is a general-purpose family of models that can be applied to image and 

video tasks with minimal task-specific training data.

● Interactive abilities of Flamingo such as “chatting” with the model, demonstrating 

flexibility beyond traditional vision benchmarks



Development Roadmap from LLaVA to 
LLaVA-OneVision

Chenming Zhu

Fall 2024



LLaVA Roadmap

● LLaVA (Visual Instruction Tuning)

● LLaVA-NeXT Blog: 

Improved reasoning, OCR, and world knowledge 

A Strong Zero-shot Video Understanding Model

Stronger LLMs Supercharge Multimodal Capabilities in the Wild

What Else Influences Visual Instruction Tuning Beyond Data?

● LLaVA-OneVision
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https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-04-30-llava-next-video/
https://llava-vl.github.io/blog/2024-05-25-llava-next-ablations/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


Model Architecture

● Vision Encoder + Projection Layer + LLM
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LLaVA: Visual Instruction Tuning
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Visual Instruction Tuning Data Construction

Use GPT-4 to convert the COCO dataset 

with Caption and Bounding Boxes 

information to data:

Conversation: Dialogue data, totaling 58K 
samples.

Detailed description: Rich and comprehensive 
descriptions of images, totaling 23K samples.

Complex reasoning: Complex reasoning data, 
totaling 77K samples.



Training Recipe

Stage 1: Pre-training for Feature Alignment  [projection layer]

  Dataset: filter CC3M to 595K image-text pairs

Stage 2: Fine-tuning End-to-End for Instruction Following [projection layer and LLM]

  Dataset: Instruction Tuning Dataset
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Limitations

● The simple connector may limit the model’s ability to deeply 

understand complex visual information.

● Limited training data scale and diversity

● Potential hallucination and misinformation



P 34

Model Architecture Modification:

● Replacing the original CLIP-ViT-L/14 visual 
encoder with the CLIP-ViT-L-336px visual 
encoder.

● Replacing the original single linear layer 
with an MLP layer (two linear layers).

LLaVA-1.5: Improved Baselines with Visual Instruction Tuning

Incorporating VQA data oriented towards 

academic tasks and specifying response format 

in prompts: This enhances LLaVA’s performance 

on academic task benchmarks.

https://link.zhihu.com/?target=https%3A//static.hliu.cc/files/llava/improved_llava.pdf
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Dynamic High Resolution

AnyRes technique is designed to accommodate images of various high resolutions. It employs a grid 

configuration of {2×2,1×{2,3,4},{2,3,4}×1}, balancing performance efficiency with operational costs for the 

high-resolution image.

LLaVA-NeXT: Improved reasoning, OCR, and world knowledge



P 36

Data Mixture

● High-quality User Instruct Data. 

First, the diversity of task instructions, ensuring adequately represent a broad spectrum of user intents that are 
likely to be encountered in real-world scenarios, particularly during the model’s deployment phase. Second, the 
superiority of responses is critical, with the objective of soliciting favorable user feedback. To achieve this, it 
considers two data sources: 

(1) Existing GPT-V data. LAION-GPT-V and ShareGPT-4V. 

(2) To further facilitate better visual conversation for more scenarios, it collects a small 15K visual instruction 
tuning dataset covering different applications. The instructions and images come from LLaVA demo, which are 
real-world users requests. They carefully filter samples that may have privacy concerns or are potentially harmful, 
and generate the response with GPT-4V.

● Multimodal Document/Chart Data. 
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LLaVA-NeXT: Improved reasoning, OCR, and world knowledge

Compared with LLaVA-1.5, LLaVA-NeXT has several improvements:

1. Increasing the input image resolution to 4x more pixels. This allows it to grasp more visual 

details. It supports three aspect ratios, up to 672x672, 336x1344, 1344x336 resolution.

2. Better visual reasoning and OCR capability with an improved visual instruction tuning data 

mixture.

3. Better visual conversation for more scenarios, covering different applications. Better world 

knowledge and logical reasoning.



P 38

 Zero-shot video representation capabilities with AnyRes

With minor code adjustments, LLaVA-NeXT can process N video frames arranged in a {1xN} grid. Assuming each frame 
comprises 24x24 tokens, the total token count for a video would be 24x24xN. However, considering the "max_token_length" 
limit of 4096 for the LLM, it is crucial to ensure that 24x24xN + the number of text tokens < 4096 to avoid nonsensical outputs.

 LLaVA-NeXT: A Strong Zero-shot Video Understanding Model



P 39

How effectively can the language capabilities of LLMs be transferred to multimodal settings?

Improved Language Capability: 
Across LLMs of comparable sizes (e.g., 7B 
Mistral/Vicuna, 7B Qwen, 8B LLaMa3), 
there exists a consistent pattern where 
higher language proficiency, as measured 
by MMMU scores, corresponds to 
improved multimodal capabilities.

Influence of Model Size: 
Within the same LLM family (e.g., Qwen 
LLM: 7B, 72B, 110B), larger models 
consistently demonstrate superior 
performance on multimodal benchmarks. 
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LLaVA-OneVision: Easy Visual Task Transfer

LLaVA-OneVision is the first single model that can simultaneously push the performance boundaries of open 
LMMs in three important computer vision scenarios: single-image, multi-image, video scenarios.
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To strike a balance of performance and cost, the author observe that the scaling of resolution is more effective than 
the scaling of token numbers, and recommend an AnyRes strategy with pooling.

Visual Representation



P 42

Visual Representation

Single-Image: consider a large maximum spatial configuration (a, b) for single-image representation to 
maintain the original image resolution without resizing.

Multi-image: Only the base image resolution is considered.

Video: Each frame of the video is resized to the base image resolution and processed by the vision encoder 
to generate feature maps. Bilinear interpolation is employed to reduce the number of tokens
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Insights on Training Strategies

Prior LLaVA models mainly explore Stage-2 for new scenarios and improved performance. 
However, the first two functionalities are less frequently investigated and therefore constitute the 
primary focus of this section.

● Stage-1: Language-Image Alignment.

● Stage-1.5: High-Quality Knowledge Learning.

● Stage-2: Visual Instruction Tuning.
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High-Quality Knowledge

To illustrate high-quality knowledge, we consider data from three major categories:

● Re-Captioned Detailed Description Data: LLaVA-NeXT-34B is known for its strong detailed caption 
ability among open-source LMMs. We used the model to generate new captions for the images from the 
following datasets: COCO118K, BLIP558K, and CC3M.

● Document / OCR Data: We utilized the Text Reading subset from the UReader dataset, totaling 100K, 
which is easily accessible through PDF rendering. We used this text reading data along with the SynDOG 
EN/CN 1M datasets.

● ShareGPT4V Chinese Detailed Caption: We used the original ShareGPT4V[3] images and utilized 
GPT-4V provided by the Azure API to generate detailed Chinese caption data, aiming to improve the 
model's capability in Chinese.
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High-Quality Knowledge



● Why LLaVA could be so popular in the community compared with others?

● How can the hallucination problem in multimodal large models be mitigated?

● Why are fewer works adopting the Q-Former architecture, instead utilizing 
the simple MLP layer?
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Discussions


