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Outline

® A Brief Overview of Method

Discussion |:Start from an empirical Finding from Experimental Results
O  We observe that different Amount of Supervision (AoS) may lead to
performance variance among evaluation datasets.
o  WVe give an empirical outlook to quantify AoS through an intrinsic
score-matching nature in CLIP objective.
Discussion 2:An close look into the CLIP objective: symmetric InfoNCE
o A theoretical equivalence to (inversed) optimal transport objective
o A theoretical understanding of softmax temperature

o The necessity of “Symmetric” in a theoretical perspective
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Method Overview

Dataset Composition: (image, text) pairs
o Search (image, text) pairs whose text includes one the query words
occurring at least 100 times in English version of Wikipedia.

o Filter the dataset:

m 20,000 (images, text) pairs for each of the 50,000 query words.

m This is to balance the supervision.
o  Using random crop augmentation.
Image Encoder: ResNet,VIT, Text Encoder:Transformer
Objective: Symmetric InfoNCE with learnable temperature.

o ltis targeted to align the embeddings of images and text.
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Discussion |:A Finding in Experimental Results

The performance of CLIP varies among evaluation datasets.

The author suspects this is induced by the different Amount of Supervision (AoS).

We ask a question: Is it possible to validate this congestion?

zero-shot CLIP v.s. linear probing a
pretrained ResNet.
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Score Match Nature induced by Polysemy

e To answer this question, we need some preliminaries on score matching:
o  Recall the training objective of a score-matching model Ext,e~N(0,I) |sg (x¢) — €|
o  The interpretation is to require a model to predict all Gaussian noisy version of a data to its clear version.
o Recall a property in score matching: a high loss of a data indicates that it is in high probability region,
otherwise it is in low probability region.
m This is because the network can easily denoise an isolated data, but it is hard to denoise a mixed one.
(one noise refers to multiple clear ones.)
® In this discussion, we reason that CLIP has an intrinsic score matching nature due to the polysemy:
o  Polysemy here refers that one image can refer to infinite text.
o  Due the polysemy, we can assume each text embedding is a noisy version of an ideal text embedding, and the

model is required to learn the expectation of the noisy embedding, which is the ideal text embedding.
Song, Y., & Ermon, S. (2019). Generative modeling by estimating p5

gradients of the data distribution. Advances in neural information
processing systems, 32.



Proof Sketch: Using a Minor Assumption on Data

Recall the training objective of a score-matching model Ey, cn(o,1)|5o (x¢) — el?

A more general score matching formula is Ey..p ¢~n(o,)L(fo (x + €), x), noticing € is sampled independently.
We rewrite the CLIP objective into a general formula: E, ,ypL(fg (x),y)

Because of polysemy, we assume that the text embedding deviates a gaussian noise N(0, o) from ideal one,

we can rewrite the objective of CLIP into:E(x,y1+€)~DL(f9 (x),y" + €), where € ~ N(0,al) dependent on y'.

It is trivial to prove that when x is dense enough in dataset, we can find a € small ball around fy (x), such

that for allfy (x;) ~ Be(fo(x)) = {fo(x") : Ifg(x") — fo(X)| < €},yi ~ N, o), where y{ = f'(x;), f"is
the ideal embedding function.

Then we can rewrite the CLIP objective to E_p, ,/ =/ (x) e~n(0,o1 L (fo (x), ¥" + €),the optimal is achieved
when fy(x) = y’, where shares the same solution of E;_p, ;7 ¢/ (x) e~n (0,01 L (fo (X), ¥")

Since for all x;, it is paired with a yl-' + €, by reparameterization, the CLIP objective can be reformulated to
Ex~D,y’=f’(x),e~N(O,aI)L(99 (Y’ +€); y,)

The objective falls in the general score-matching formula. Pé



Score Matching Gives Estimation of AoS

As we have shown the CLIP objective take a intrinsic score-matching, we can utilize a nice property of score
matching.
As reasoned before, in score matching perspective, a small loss of a training (image, text) indicates small AoS,
while a large loss indicates the larger one.
This might be a new interpretation to the Modality Gap phenomenon:
o “modality gap” is a phenomenon that the trained text embedding and image embedding do not necessarily
have a high cosine similarity.
m  Some work explain in Cone effect and local minimum
o At the angle of score matching, modality gap is an empirical risk, which is a loss by taking expectation on
the similarity between all possible noisy data and the clean one.
Furthermore, nontrivially, one can also run Langevin Dynamics to sample the embedding distribution of training

data’ WhICh glves quantltatlve measure Of AOS' Liang, V. W., Zhang, Y., Kwon, Y., Yeung, S., & Zou, J. Y. (2022). Mind the gap:

Understanding the modality gap in multi-modal contrastive representation learning.
Advances in Neural Information Processing Systems, 35, 17612-17625.

Shi, P., Welle, M. C., Bjérkman, M., & Kragic, D. (2023). Towards
understanding the modality gap in CLIP. In ICLR 2023 Workshop on P7
Multimodal Representation Learning: Perks and Pitfalls.



Discussion 2: Symmetric InfoNCE

The loss of CLIP is a combination of symmetric InfoNCEs.

i exp(sim(z{,ziT)/T)
N 7L, exp(sim(z], 2F)/7)

Here, zM and z*T means the image and text embedding respectively. /tau is the

. 1
L= min Lcorip = 5(51 + Lr).

softmax temperature.
Without loss of generality, we analyze L_1I:
o  QI:Why using log likelihood, and softmax?
o  Q2:Why softmax temperature is initialized by a very small number in

CLIP.

o Q3:Why symmetric! How about just using L_|.
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Preliminary: Optimal Transport Objective
To answer these questions, we introduce the objective of Optimal Transport:

e Given two marginal distributions and their transport cost, what is the
transport plan with a minimum cost!?

® An inverse one: Given a transport plan and marginals, what is the mini cost?

To solve the inverse Optimal Transport, we have A bilevel minimization Obijective:

m@in KL(P| Pe)
where P? =arg énig < CY P> —cH(P).
=
Where P tilde here refers to the observed transport plans, P theta refers to the
parameterized plan guided by a learned transport cost with a marginal constraint.
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QIl:The Equivalence Between InfoNCE and IOT

® The proof is trivial.

e The derivation only constraints transport
plan to one marginal distribution, i.e., image
marginal distribution.

® We observe that

o  Softmax serves as a regularization in
OT.

o Log likelihood comes from parts of
outer KL divergence.

o  One more question:Why KL?

m  An interesting direction to dig.

Shi, L., Zhang, G., Zhen, H., Fan, J., & Yan, J. (2023, July). Understanding and
generalizing contrastive learning from the inverse optimal transport perspective. In
International conference on machine learning (pp. 31408-31421). PMLR.

B. Lagrangian for Regularized OT

Our proof is as follows, which is technically akin to (Cuturi, 2013) in terms of using Lagrangian duals for Regularized OT,
which in fact has been well adopted in OT literature.

B.1. Lagrangian under U (a)

Now we show the point set matching framework for CL with the simplified constraints:
U(a) = {P e R}Y*™|P1,, = a} 27)
Should be n here

where a = 1/m and 1,, is the m-dimensional column vector whose elements are all ones. With the objective of the
regularized OT:

P’ =arg min <C’ P> —eH(P), (28)
PeU(a)

We introduce the dual variable f € R™. The Lagrangian of the above equation is:

L(P,f) =< C",P > —eH(P) -3 £+ 3 Py - = 29)
i=1 j=1 L
The first order conditions then yield by:
OL(P.f) i _
OT”—C,i]+ElDDP,J—fL—O (30)

Thus we have P;; = e®=CE/e for every 7 and j, for optimal P coupling to the regularized problem. Due to Zj P =1/n
for every 4, we can calculate the Lagrangian parameter f; and the solution of the coupling is given by:
exp (~C%, /)

Pi=— —F o5
T YL exp (=CY/e)

(€Y}
Then in outer minimization, if we set P” = % for each i and I:’L] = 0 when ¢ # j, we get the contrastive loss under U (a)

i exp(—CY/e)
G e E Tog[ — ii — 5
B L - (2?:1 CXP<7C?]/€)) -+ Gontam (32)

We have therefore got the loss of IOT-CL under U (a).



Q2: Softmax only Benefits Optimization

We declare that Softmax regularization should be small but not zero.
From QI, Softmax Temperature is exactly the entropy regularization coefficient.
|deally, there is no need for a regularization in contrastive learning,
o  The matching should be as sharp as possible to ensure discriminess.
But we cannot cancel this regularization, since it is useful in optimization

o Negative \epsilon H(x) Ensuring \epsilon-strong convexity.

Lo.o1s0 £ 0.0010
0.0125 = 0.0008
00100 —
10,0075
-0.0004
10,0050
-0.0025 e
a - 0.0000 -0.0000
&£=10.001 =01 e=1 e=10

Figure 3. Results of couplings PY by varying e given 64 trained features on CIFAR-10 based on the SimCLR framework (Chen et al.,

2020). When e — 0, P? becomes sharper for probability prediction. With the increment of ¢, P’ becomes more uniform and when

€ — 400, P? approximates to a uniform distribution, which has nothing to do with the quality of the learned features.
Shi, L., Zhang, G., Zhen, H., Fan, J., & Yan, J. (2023, July). Understanding and genere’z‘l‘iz‘ir‘ng
contrastive learning from the inverse optimal transport perspective. In International conference on
machine learning (pp. 31408-31421). PMLR.



Q3:The Necessity of Symmetric Loss

: 1
Recall CLIP is a symmetric InfoNCE. g Lepip = 5(51 +Lr).
By looking into the equivalent OT objective, L_| ensure the marginal of images, L_t

ensure the marginal of text.

min KL(P|P?)
0 . 9 U here follows either image
where P” = arg gleul} <C >P > _GH(P)- marginal, or text marginal.

Then the necessity of a symmetric InfoNCE is clear:
o Intuitively, if only ensuring image marginal, it does not prohibit one text matches to two

images.
o A symmetric loss ensures both image and text marginal, ensuring a one-one image-text

mapping, and intuitively inducing better discriminess.



Take-home Messages

e With minor assumptions, theoretically we show the CLIP objective has an
intrinsic score-matching nature.The loss value of a training (image-text) pair
has a potential to evaluate the amount of supervision, which induces
performance variance in evaluation datasets.

® We show the CLIP obijective is theoretically equivalent to a combination of
two inverse optimal transport objectives. With this insight, we show a small
temperature ensures hard matching and strong convexity. We also show the
necessity of a symmetric loss, which ensures both image and text marginal

distribution.
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Flamingo: a Visual Language Model for
Few-Shot Learning

DATA 8005
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Key innovations

® Bridge powerful pretrained vision-only and language-only models
e Handle sequences of arbitrarily interleaved visual and textual data

e Seamlessly ingest images or videos as inputs

, my favourite
play is Hamlet. I
also like

, my favorite y Dreams from

I like reading book is my Father.




Few-shot prompting

Input Prompt

[ 7 Completion ]

p

N

&

This is a o ) a flamingo.
i This is a shiba. They are found
chinchillathey) They are very This is in the
are n}:ﬂgglfound popular in Japan. Caribbean and
in e} South America.
) -
N @ B\
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Napoleon float. head.
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Video Understanding

What happens to
the man after
hitting the ball?
Answer:

he falls down.




Dialogue

This is a picture of two teddy
bears on the moon.

What are they doing?

They are having a
conversation.

What object are they using?
It looks like a computer.
Is this surprising?
Yes, it is surprising.

Why is this picture surprising
to you?

I think it is surprising because
teddy bears are not usually
found on the moon.

What is the common thing
about these three images?

They are all flamingos.

What is the difference be-
tween these three images?

The first one is a cartoon, the
second one is a real flamingo,
and the third one is a 3D

(> model of a flamingo.

®

®

&

This is an apple with a sticker
on it.

What does the sticker say?

The sticker says "iPod".
Where is the photo taken?

It looks like it’s taken in a
backyard.

Do you think it is printed or
handwritten?

It looks like it’s handwritten.
What color is the sticker?

It’s white.

This is a cityscape. It looks
like Chicago.

What makes you think this is
Chicago?

I think it’s Chicago because
of the Shedd Aquarium in the
background.

';;3 i T -
ﬂi:‘”}n ﬁ i~

What about this one? Which
city is this and what famous
landmark helped you recog-
nise the city?

This is Tokyo. I think it’s
Tokyo because of the Tokyo

(™ Tower.

©




Next-token prediction task

e Flamingo models the likelihood of text y conditioned on interleaved images and

videos x, and past text y<lI.
L

p(ylz) = H P(Yely<e, T<e),
=1



Mixture of vision and language datasets

Interleaved image and text dataset.
Image-text pairs.

Video-text pairs.

Multi-objective training and optimisation strategy

M E
Z Am * E(w,y)NDm - Zlogp(yg|y<g, fb’ge)

m=1 /=1



Flamingo architecture overview

. Pretrained and frozen

Trained from scratch

Output: text

a very serious cat.

I

-

Perceiver Perceiver
Resampler Resampler

n-th GATED XATTN-DENSE

1st GATED XATTN-DENSE

Processed text T

<image> This is a very cute dog.<image> This is

Interleaved visual/text data

This is a very cute dog.

This is




Perceiver Resampler

Perceiver Resampler

FFW
@
Attention
K=V=[X_,X] T a=[x]
T X

Learned

latent

queries

def perceiver_resampler(
XT)
time_embeddings,
x, # R learned latents of shape [R, d]
num_layers, # Number of layers

"""The Perceiver Resampler model."""

# Add the time position embeddings and flatten.
x_f = x_f + time_embeddings
x_f = flatten(x_f) # [T, S, d] -> [T * S, d]
# Apply the Perceiver Resampler layers.
for i in range(num_layers):
# Attention.
x = X + attention_i(q=x, kv=concat([x_f, x]))
# Feed forward.
x = x + ffw_i(x)
return x

# The [T, S, d] visual features (T=time, S=space)
# The [T, 1, d] time pos embeddings.




— GATED XATTN-DENSE

GATED XATTN-DENSE layers

def gated_xattn_dense(

y, # input language features
x, # input visual features
alpha_xattn, # xattn gating parameter - init at @.

alpha_dense, # ffw gating parameter — init at @.

"""Applies a GATED XATTN-DENSE layer."""

# 1. Gated Cross Attention

y = y + tanh(alpha_xattn) * attention(g=y, kv=x)

tanh gating
1
# 2. Gated Feed Forward (dense) Layer

FFW
t

®

tanh gating
1

y = y + tanh(alpha_dense) * ffw(y)

# Regular self-attention + FFW on language

y = y + frozen_attention(g=y, kv=y)

cross attention Vim ¥ € Frozen-Tru(y)

1
1
:
1
1
i
1
1
1
'
1
1
1
1
:
i o
1
- ®
1
1
1
1
1
1
1
1
1
i
1
1
1
i
1
: return y # output visually informed language features
1

Q=[v]

Vision
input input

Language




Interleaved visual data and text support

Cute pics of my pets!

My puppy sitting in the
grass.

My cat looking very
dignified.

-

h

Masked cross attention

0 o 5 A O e O I A i

2] e © 8 8 @ 8 1 1 11 1 1 1 i . 2 2 2 22
s/<BOS> Cute pics of my pets!<EOC><image>My puppy sitting in the grass. <EOC><image>My cat looking very dlgn1f1ed <EOC>

f

tokenization

t

<BOS>Cute pics of my pets!<EOC><image>My puppy sitting in the grass.<EOC><image> My cat looking very dignified.<EOC>

Input pag

Proc d text: <image> tags are inserted and special tokens are added

K=V=[X]
1
Percelver Perceiver
pler R pler

&

.2

Image 1

Image 2



Experiments
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OpenFlamingo

S~ OpenFlamingo average performance compared to Flamingo
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Awadalla, Anas, et al. "Openflamingo: An open-source framework for training large autoregressive vision-language models." arXiv preprint
arXiv:2308.01390 (2023).



Discussions

Limitations:

e Inheriting Weaknesses of Language Models.
e Poor Classification Performance

e Limitations of In-Context Learning

Conclusion:

e Flamingo is a general-purpose family of models that can be applied to image and

video tasks with minimal task-specific training data.

® Interactive abilities of Flamingo such as “chatting” with the model, demonstrating

flexibility beyond traditional vision benchmarks



Development Roadmap from LLaVA to
LLaVA-OneVision
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LLaVA Roadmap

LLaVA-NeXT

April ®
(Video)
e LLaVA (Visual Instruction Tuning)
Moy @ LLEVANEXT
e |LaVA-NeXT B|Og: { Jan ® LLaVA-NeXT il July ® LLaVA-OneVision J
" LLaVA-NeXT
&7 (Ablations)

Improved reasoning, OCR, and world knowledge

LLaVA-NeXT

(Interleave)

June

A Strong Zero-shotVideo Understanding Model
Stronger LLMs Supercharge Multimodal Capabilities in the Wild

What Else Influences Visual Instruction Tuning Beyond Data?

e LLaVA-OneVision


https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-04-30-llava-next-video/
https://llava-vl.github.io/blog/2024-05-25-llava-next-ablations/
https://llava-vl.github.io/blog/2024-01-30-llava-next/

LLaVA:Visual Instruction Tuning

Model Architecture

e Vision Encoder + Projection Layer + LLM

Language Response X ’ ’ .

/// /'/j ——

Language Model f¢

//////

ﬁﬁﬁﬁﬁﬁ

Projection W
rojection Z. H, *H

X, Image Xq Language Instruction

Vision Encoder

Figure 1: LLaVA network architecture.



Visual Instruction Tuning Data Construction

Context type 1: Captions

A group of people standing outside of a black vehicle with various luggage.
Luggage surrounds a vehicle in an underground parking area

People try to fit all of their luggage in an SUV.

The sport utility vehicle is parked in the public garage, being packed for a trip#¥
Some people with luggage near a van that is transporting it.
Context type 2: Boxes Vgl
person: [0.681, 0.242, 0.774, 0.694], backpack: [0.384, 0.696, 0.485, 0.914], suitcase: ...<omitted>

Response type 1: conversation

Question: What type of vehicle is featured in the image?

Answer: The image features a black sport utility vehicle (SUV) ...<omitted>

Response type 2: detailed description

The image is an underground parking area with a black sport utility vehicle (SUV) parked. There
are three people in the scene, with one person standing closer to the left side of the vehicle, another
person in the middle, and the third person on the right side. They are all working together to pack
their luggage into the SUV for a trip. ...<omitted>

Response type 3: complex reasoning

Question: What challenges do these people face?

Answer: In the image, a group of people is standing outside a black SUV in a parking area,
surrounded by various pieces of luggage, including suitcases and backpacks. They are facing the
challenge of fitting all their luggage into the black SUV. There are multiple suitcases and backpacks
to be packed, which suggests that the group has a significant amount of belongings ...<omitted>

Use GPT-4 to convert the COCO dataset
with Caption and Bounding Boxes

information to data:

Conversation: Dialogue data, totaling 58K
samples.

Detailed description: Rich and comprehensive
descriptions of images, totaling 23K samples.

Complex reasoning: Complex reasoning data,
totaling 77K samples.

P31



Training Recipe
Stage |:Pre-training for Feature Alignment [projection layer]

Dataset: filter CC3M to 595K image-text pairs

Stage 2: Fine-tuning End-to-End for Instruction Following [projection layer and LLM]

Dataset: Instruction Tuning Dataset



Limitations

e The simple connector may limit the model’s ability to deeply

understand complex visual information.

e Limited training data scale and diversity

® Potential hallucination and misinformation



LLaVA-1.5: Improved Baselines with Visual Instruction Tuning

Model Architecture Modification:

® Replacing the original CLIP-ViT-L/14 visual
encoder with the CLIP-ViT-L-336px visual
encoder.

® Replacing the original single linear layer
with an MLP layer (two linear layers).

Incorporating VQA data oriented towards
academic tasks and specifying response format
in prompts: This enhances LLaVA’s performance

on academic task benchmarks.

Method LLM Res. \ GQA MME MM-Vet

InstructBLIP 14B 224 \ 495 12128 256

Only using a subset of InstructBLIP training data

0 LLaVvA 7B 224 | - 809.6 25.5

1 +VQA-v2 7B 224 | 470 1197.0 27.7

2 +Format prompt 7B 224 | 468 1323.8 26.3

3 +MLP VL connector 7B 224 | 473 13552 278

4 +OKVQA/OCR 7B 224 | 500 1377.6 29.6

Additional scaling

5 +Region-level VQA 7B 224 | 50.3 14265 30.8

6 +Scale up resolution 7B 336 | 514 1450 30.3

7 +GQA 7B 336 | 62.0* 1469.2  30.7

8  +ShareGPT 7B 336 | 62.0* 1510.7 31.1

9 +Scale up LLM 13B 336 | 63.3* 15313 36.1
Table 2. Scaling results on data, model, and resolution.

We choose to conduct experiments on GQA [20], MME [16], and
MM-Vet [52] to examine the representative capabilities of VQA
with short answers, VQA with output formatting, and natural vi-
sual conversations, respectively. *Training images of GQA were

observed during training.


https://link.zhihu.com/?target=https%3A//static.hliu.cc/files/llava/improved_llava.pdf

LLaVA-NeXT: Improved reasoning, OCR, and world knowledge

Dynamic High Resolution

flatten

l

LLM

resize

Illustration of dynamic high resolution scheme: a grid configuration of 2 X 2

AnyRes technique is designed to accommodate images of various high resolutions. It employs a grid
configuration of {2x2,1%{2,3,4},{2,3,4}x |}, balancing performance efficiency with operational costs for the

high-resolution image.



Data Mixture

e High-quality User Instruct Data.

First, the diversity of task instructions, ensuring adequately represent a broad spectrum of user intents that are
likely to be encountered in real-world scenarios, particularly during the model’s deployment phase. Second, the
superiority of responses is critical, with the objective of soliciting favorable user feedback.To achieve this, it
considers two data sources:

(1) Existing GPT-V data. LAION-GPT-V and ShareGPT-4V.

(2) To further facilitate better visual conversation for more scenarios, it collects a small 15K visual instruction
tuning dataset covering different applications.The instructions and images come from LLaVA demo, which are
real-world users requests. They carefully filter samples that may have privacy concerns or are potentially harmful,
and generate the response with GPT-4V.

e Multimodal Document/Chart Data.



LLaVA-NeXT: Improved reasoning, OCR, and world knowledge

Compared with LLaVA-1.5, LLaVA-NeXT has several improvements:

1. Increasing the input image resolution to 4x more pixels. This allows it to grasp more visual
details. It supports three aspect ratios, up to 672x672, 336x1344, 1344x336 resolution.

2. Better visual reasoning and OCR capability with an improved visual instruction tuning data
mixture.

3. Better visual conversation for more scenarios, covering different applications. Better world

knowledge and logical reasoning.
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LLaVA-NeXT:A Strong Zero-shot Video Understanding Model
Zero-shot video representation capabilities with AnyRes

LLM LLM

ENENNENSENENNEEE ENENNNNENENNEEn

encode encode

-l EESeEESS
lllustration that AnyRes digests a set of image as a sequence of concatenated visual tokens, allowing unified image and video input, which natually suppots the evolution from multi-
image to multi-frame

With minor code adjustments, LLaVA-NeXT can process N video frames arranged in a {IxN} grid. Assuming each frame
comprises 24x24 tokens, the total token count for a video would be 24x24xN. However, considering the "max_token_length"
limit of 4096 for the LLM, it is crucial to ensure that 24x24xN + the number of text tokens < 4096 to avoid nonsensical outputs.



How effectively can the language capabilities of LLMs be transferred to multimodal settings?
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Language Performance: MMLU Scores

Improved Language Capability:
Across LLMs of comparable sizes (e.g., 7B
Mistral/Vicuna, 7B Qwen, 8B LLaMa3),
there exists a consistent pattern where
higher language proficiency, as measured
by MMMU scores, corresponds to
improved multimodal capabilities.

Influence of Model Size:

Within the same LLM family (e.g., Qwen
LLM: 7B, 72B, | 10B), larger models
consistently demonstrate superior
performance on multimodal benchmarks.



LLaVA-OneVision: Easy Visual Task Transfer

LLaVA-OneVision is the first single model that can simultaneously push the performance boundaries of open
LMMs in three important computer vision scenarios: single-image, multi-image, video scenarios.

Language Response %
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[ Projection Do VﬁK fé
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Visual Representation

To strike a balance of performance and cost, the author observe that the scaling of resolution is more effective than

the scaling of token numbers, and recommend an AnyRes strategy with pooling.
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(a) Higher AnyRes with Bilinear Interpolation
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(b) The original AnyRes
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Visual Representation

...NCrops |(1+9)*729 =7290 Tokens

12 * 729 = 8748 Tokens

... NFrames 32 * 196 = 6272 Tokens

N * 196 Tokens
Example on Token Strategy Max Tokens

Single-Image: consider a large maximum spatial configuration (a, b) for single-image representation to
maintain the original image resolution without resizing.

Multi-image: Only the base image resolution is considered.

Video: Each frame of the video is resized to the base image resolution and processed by the vision encoder
to generate feature maps. Bilinear interpolation is employed to reduce the number of tokens P42



Insights on Training Strategies

Prior LLaVA models mainly explore Stage-2 for new scenarios and improved performance.
However, the first two functionalities are less frequently investigated and therefore constitute the
primary focus of this section.

e Stage-|:Language-lmage Alignment.

e Stage-1.5: High-Quality Knowledge Learning.

e Stage-2:Visual Instruction Tuning.

l Stage-1 l Stage-1.5 Stage-2
i
%

|
. High-Quality . . .
< Language-lmage Allgnm@ g <|__' Knowledge Learning > -_> CT Visual Instruction Tumng>
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High-Quality Knowledge

To illustrate high-quality knowledge, we consider data from three major categories:

Re-Captioned Detailed Description Data: LLaVA-NeXT-34B is known for its strong detailed caption

ability among open-source LMMs.We used the model to generate new captions for the images from the
following datasets: COCO| 8K, BLIP558K, and CC3M.

Document / OCR Data: We utilized the Text Reading subset from the UReader dataset, totaling 100K,

which is easily accessible through PDF rendering.We used this text reading data along with the SynDOG
EN/CN |M datasets.

ShareGPT4V Chinese Detailed Caption: We used the original ShareGPT4V[3] images and utilized
GPT-4V provided by the Azure API to generate detailed Chinese caption data, aiming to improve the
model's capability in Chinese.
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High-Quality Knowledge

Training Strategies with Data Scaling
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Figure 2. This figure shows that using LLaVA-ReCap Data in Stage 1.5 training yields the most significant improvements (red circles). Performance
with raw captions data like COCO18K, BLIP558K, and CC3M is also strong (blue circles). We also include the results from Section 3.1 (squared
shape), where only the projector was trained using raw captions data at various scales (e.g. from BLIP558K to Web 12M).
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Discussions

Why LLaVA could be so popular in the community compared with others?

How can the hallucination problem in multimodal large models be mitigated?

Why are fewer works adopting the Q-Former architecture, instead utilizing
the simple MLP layer?
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