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Self-Attention:

• N is the sequence length, d is the head dimension

• often N >> d (for GPT2, N = 1024 and d = 64)

• time and memory complexity are quadratic in sequence length
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Transformers are slow and memory-hungry



• GPU memory hierarchy, smaller memory being faster

• GPUs have a massive number of threads to execute an 

operation (called a kernel)

• Each kernel loads inputs from HBM to registers and 

SRAM, computes, then writes outputs to HBM
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Hardware performance



• Three stages, where softmax is applied row-wise

• Tiling is needed for MatMul due to limited SRAM

• Softmax should be applied to each row of S by 3-pass
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Standard attention implementation
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FlashAttention
Online softmax

• remove the dependency on N:

• find a recurrence relation:

• 2-pass online softmax: 
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FlashAttention
Still need 2-pass
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FlashAttention
• again, remove dependency on N:

• find a recurrence relation:

• one-pass FlashAttention:
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FlashAttention
• Implementation

• Effects
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FlashAttention
Takeaways:

1. FlashAttention proposes a one-pass algorithm to fuse the three stages in 
original self-attention into one stage.

2. By doing so, FlashAttention reduces times of accessing HBM to achieve faster 
self-attention computation.

3. The core idea of the algorithm is similar to online softmax.



Thank you!
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Potential alternative of transformer?
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Used in different regionsRejected by ICLR
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The origin of mamba: State Space Model(SSM)

Function:
To describe the relation between u(input) and y(output) discretization
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Use of convolution kernel to implement SSM

Use of convolution operation to 
efficiently train SSM model
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Linear RNN

Activation: nonlinear operation to linear operation
RNNs are not efficient at training because of sequential computing
Similar to RNN, in mamba, A is used for long term memory, 
B is to write into the RNN memory, C is to read from RNN memory
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From SSM to Mamba

Motivation:
Same parameter for different 
inputs causes limited capacity 
for models 

Data dependent:
Make parameters related to 
data can help solve this kind of 
problem
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New Challenge: how to parallel?

When A,B,C is dependent on input, we can’t use 
convolution anymore.
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Mamba structure

data flow

model structure
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Experiment results

scaling law

high speed
without OOM problem
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Following

Mamba2
New model 
structure
Faster scan 
ways

Falcon-mamba-7b Jamba
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Discussion

Is mamba a potential alternative of transformer?
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What is a Mixture of Experts (MoE)?
● Training a larger model for fewer steps is better than training a smaller model 

for more steps.

● Mixture of Experts enable models to be pretrained with far less compute.

a MoE consists of two main elements:

● Sparse MoE layers are used instead of dense feed-forward network (FFN) 

layers.

● A gate network or router, that determines which tokens are sent to which 

expert. 
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Title sample

This is an advanced graduate course

push at the NLP boundary



What is a Mixture of Experts (MoE)?
● In MoEs we replace every FFN layer of the transformer model with an MoE 

layer, which is composed of a gate network and a certain number of experts.

Challenges:

● Struggled to generalize during fine-tuning, leading to overfitting.

● All parameters need to be loaded in RAM, so memory requirements are high.
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What is Sparsity?
● While in dense models all the parameters are used for all the inputs, sparsity 

allows us to only run some parts of the whole system.

● The idea of conditional computation (parts of the network are active on a 

per-example basis) allows one to scale the size of the model without 

increasing the computation.
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Load balancing tokens for MoEs
Challenge: uneven batch sizes and underutilization.

Solution: 

● Auxiliary loss: an auxiliary loss is added to encourage giving all experts equal 

importance, which ensures that all experts receive a roughly equal number of 

training examples.

● Random routing: in a top-2 setup, we always pick the top expert, but the 

second expert is picked with probability proportional to its weight.

● Expert capacity: we can set a threshold of how many tokens can be 

processed by one expert.
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Fine-tuning MoEs
● Sparse models are more prone to overfitting, so we can explore higher 

regularization (e.g. dropout) within the experts themselves (e.g. we can have 

one dropout rate for the dense layers and another, higher, dropout for the 

sparse layers).

● At a fixed pretrain perplexity, the sparse model does worse than the dense 

counterpart in downstream tasks, especially on reasoning-heavy tasks such as 

SuperGLUE.

● On the other hand, for knowledge-heavy tasks such as TriviaQA, the sparse 

model performs disproportionately well.
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Fine-tuning MoEs

In the small task (left), we can see clear overfitting as the sparse model does much worse in the validation set. In the 
larger task (right), the MoE performs well.
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Fine-tuning MoEs
● Freezing all non-expert weights and only updating the MoE layers leads to a 

huge performance drop.

● Freezing only the parameters in MoE layers worked almost as well as updating 

all parameters, which is somewhat counter-intuitive as 80% of the parameters 

are in the MoE layers.

● The hypothesis for that architecture is that, as expert layers only occur every 

1/4 layers, and each token sees at most two experts per layer, updating the 

MoE parameters affects much fewer layers than updating other parameters.
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Fine-tuning MoEs

By only freezing the MoE layers, we can speed up the training while preserving the quality.
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Fine-tuning MoEs
● Sparse models tend to benefit more from smaller batch sizes and higher 

learning rates.

● MoEs might benefit much more from instruction tuning than dense models.
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Fine-tuning MoEs

Sparse models fine-tuned quality improves with higher learning rates and smaller batch sizes. 
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Fine-tuning MoEs

Sparse models benefit more from instruct-tuning compared to dense models.
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When to use sparse MoEs vs dense models?
● Experts are useful for high throughput scenarios with many machines. Given a 

fixed compute budget for pretraining, a sparse model will be more optimal. For 

low throughput scenarios with little VRAM, a dense model will be better.
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Parallelism
● Expert parallelism: experts are placed on different workers. If combined 

with data parallelism, each core has a different expert and the data is 

partitioned across all cores.

● With expert parallelism, experts are placed on different workers, and each 

worker takes a different batch of training samples. For non-MoE layers, expert 

parallelism behaves the same as data parallelism. For MoE layers, tokens in the 

sequence are sent to workers where the desired experts reside.
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MoEs:

● Are pretrained much faster vs. dense models

● Have faster inference compared to a model with the same number of 

parameters

● Require high VRAM as all experts are loaded in memory

● Face many challenges in fine-tuning, but recent work with MoE 

instruction-tuning is promising
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TL;DR



● Distilling Mixtral into a dense model

● Explore model merging techniques of the experts and their impact in 
inference time

● Perform extreme quantization techniques of Mixtral
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Discussions


