

DATA 8005 Advanced Natural Language Processing

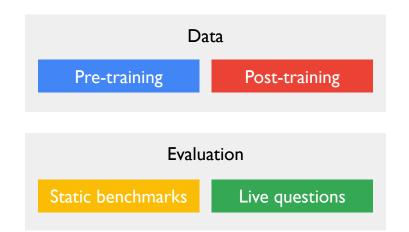
LLM - Data and Evaluation

Jianrui Wu, Tianle Li

Fall 2024

Outline

- Background
- The FineWeb Datasets
- DoReMi: Pre-training data reweighting
- Post-training Data in Llama 3
- Evaluations of LLama 3 and OpenAl ol
- Chatbot Arena: Human evaluation



Background

- LLMs like Llama 3 show high performance on different benchmarks, such as:
 - MMLU: a general multitask benchmark
 - GPQA: a Q&A dataset for science domains
 - HumanEval: a benchmark for coding ability
- How to get these datasets to train and evaluate LLMs?

	Meta Llama 3 8B	Gemma 7B - It Measured	Mistral 7B Instruct Measured		Meta Llama 3 70B	Gemini Pro 1.5 Published	Clauc Soni Publis
MMLU 5-shot	68.4	53.3	58.4	MMLU 5-shot	82.0	81.9	79.
GPQA 0-shot	34.2	21.4	26.3	GPQA 0-shot	39.5	41.5 _{CoT}	38. Cot
HumanEval 0-shot	62.2	30.5	36.6	HumanEval 0-shot	81.7	71.9	73.0
GSM-8K 8-shot, CoT	79.6	30.6	39.9	GSM-8K 8-shot, CoT	93.0	91.7 11-shot	92.3 0-shc
MATH 4-shot, CoT	30.0	12.2	11.0	MATH 4-shot, CoT	50.4	58.5 Minerva prompt	40.

The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale

Introduction

- FineWeb
 - A web-based pre-training dataset derived from 96 Common Crawl
 - 15 trillion tokens
- Pipeline
 - Text extraction
 - Base filtering
 - Deduplication
 - C4's filters
 - heuristic filters
- FineWeb-Edu
 - An educational dataset filtered from FineWeb
 - I.3 trillion tokens

Setup

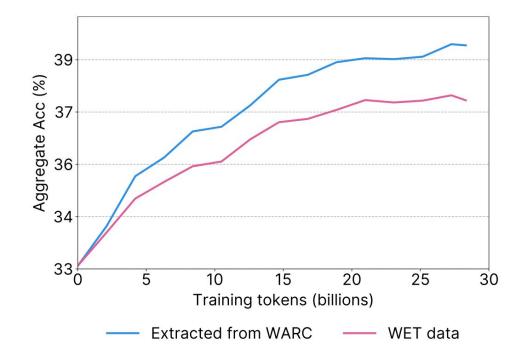
- A series of ablation experiments
 - Models are identical apart from the data they are trained on
 - Evaluated on the same set of downstream task benchmark datasets
 - Train two models for each dataset version

Pipeline I - Text Extraction

- Two formats in Common Crawl data
 - WARC (Web ARChive format): raw data, the full page HTML and request metadata
 - WET (WARC Encapsulated Text): a text-only version
- WET retained too much boilerplate and menu text
- Extracting the text content from the WARC files using trafilatura

Pipeline I - Text Extraction

• Trafilatura-extracted WARC vs WET

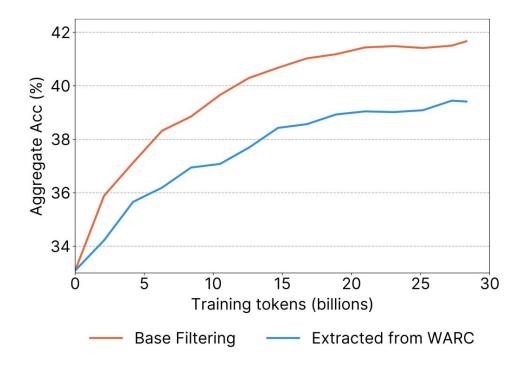


Pipeline 2 - Base Filtering

- URL filtering: using a blocklist to remove adult content
- A fastText language classifier: keep only English text with a score >= 0.65
- Quality and repetition filters from MassiveText

Pipeline 2 - Base Filtering

• Base filtered WARC vs Unfiltered WARC data

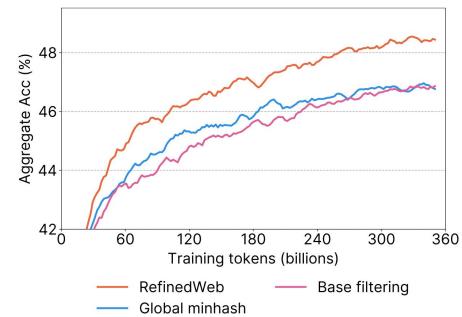


Pipeline 3 - Deduplication

- Duplicates: aggregators, mirrors, templated pages ...
- Removing duplicates:
 - improve model performance
 - reduce model memorization
- MinHash: a fuzzy hash-based deduplication technique
 - collect each document's 5-grams
 - using 112 hash functions
 - split into 14 buckets of 8 hashes each
 - targeting documents that are at least 75% similar

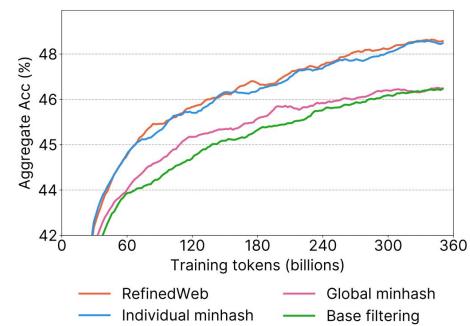
Pipeline 3 - Deduplication

- Global MinHash: apply MinHash to the entire dataset (all 96 snapshots)
- From the most recent snapshot to the oldest snapshot
- little improvement



Pipeline 3 - Deduplication

- Individual Minhash: individually deduplicating each snapshot
- Improve performance: remove large clusters of duplicates
- Harm performance: remove a small number of duplicates

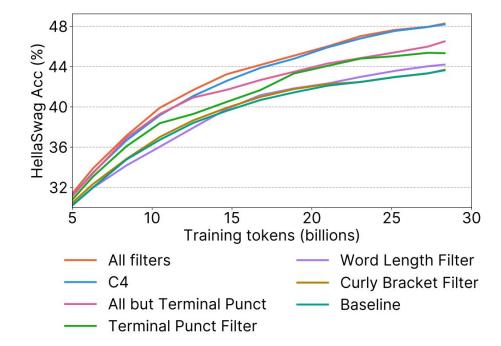


Pipeline 4 - C4's Filters

- C4 dataset: smaller but stronger. Why?
- Dropping lines that
 - without a terminal punctuation mark
 - mentioned javascript
 - had "terms-of-use"/"cookie policy" statements
- Dropping documents that were too short or that contained "lorem ipsum" or a curly bracket ({)

Pipeline 4 - C4's Filters

• Terminal punctuation filter gives the biggest boost but removes too much data (30%)

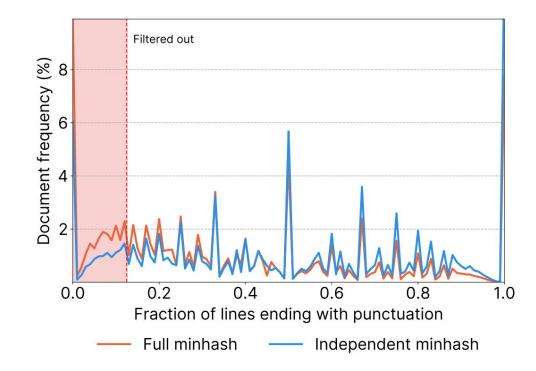


Pipeline 5 - Heuristic Filters

- A more systematic process for designing heuristic filters
 - collecting over 50 high-level statistics
 - "high-quality" and "low-quality" datasets
 - identified metrics for which the distribution of values differed significantly across the two datasets
- Three heuristic filters were chosen:
 - the fraction of lines ending with punctuation is ≤ 0.12
 - the fraction of characters in duplicated lines is ≥ 0.1
 - the fraction of lines shorter than 30 characters is ≥ 0.67

Pipeline 5 - Heuristic Filters

• Impact of Heuristic Filters on 2013-48 Crawl

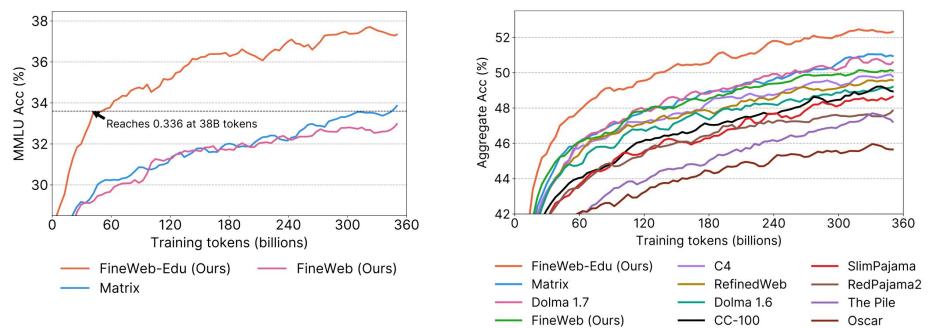


FineWeb-Edu

- Identifying educational content
 - synthetic annotations generated by Llama-3- 70B-Instruct
 - train a linear regression model as an educational quality classifier
 - determine the threshold

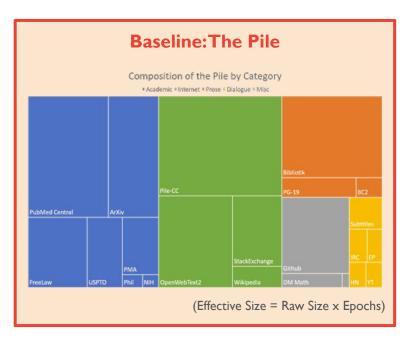
Performance

- Performance of FineWeb-Edu and FineWeb
- A 1.82B model trained on 350 billion tokens



DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining

Pre-training data come from many sources...



		and a series when the series were series	10.0 March 10.00			and some product and production and	
Domain	Baseline	DoReMi (280M)	Difference	Domain	Baseline	DoReMi (280M)	Difference
Pile-CC	Pile-CC 0.1121 0.6057 +0.4936 DM Mathematics		DM Mathematics	0.0198	0.0018	-0.0180	
YoutubeSubtitles	0.0042	0.0502	+0.0460	Wikipedia (en)	0.0919	0.0699	-0.0220
PhilPapers	0.0027	0.0274	+0.0247	OpenWebText2	0.1247	0.1019	-0.0228
HackerNews	0.0075	0.0134	+0.0059	Github	0.0427	0.0179	-0.0248
Enron Emails	0.0030	0.0070	+0.0040	FreeLaw	0.0386	0.0043	-0.0343
EuroParl	0.0043	0.0062	+0.0019	USPTO Backgrounds	0.0420	0.0036	-0.0384
Ubuntu IRC	0.0074	0.0093	+0.0019	Books3	0.0676	0.0224	-0.0452
BookCorpus2	0.0044	0.0061	+0.0017	PubMed Abstracts	0.0845	0.0113	-0.0732
NIH ExPorter	0.0052	0.0063	+0.0011	StackExchange	0.0929	0.0153	-0.0776
OpenSubtitles	0.0124	0.0047	-0.0077	ArXiv	0.1052	0.0036	-0.1016
Gutenberg (PG-19)	0.0199	0.0072	-0.0127	PubMed Central	0.1071	0.0046	-0.1025
1							

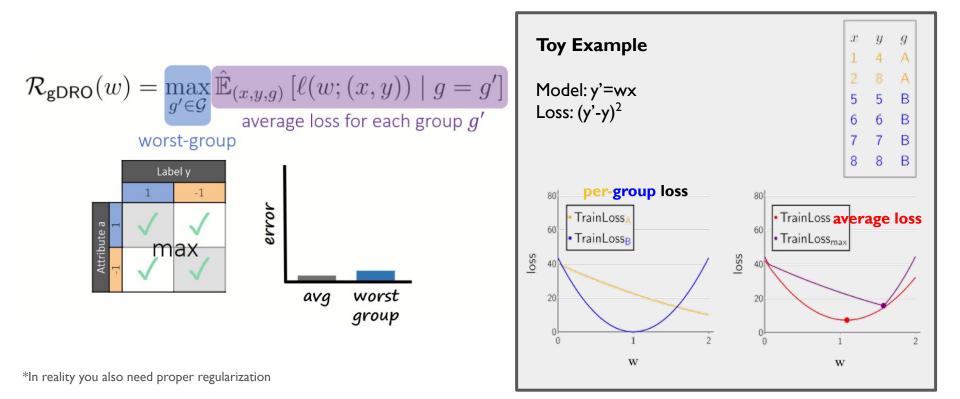
Data reweighting – by training a small proxy

DoReMi

- 1. Train a small reference model $p_{\theta}(x)$ with default domain weights $\alpha_{\rm ref}$
- 2. Train a small proxy model $p_{ref}(x)$ with <u>Group</u> <u>Distributionally</u> <u>Robust Optimization</u> to obtain new domain weights $\bar{\alpha}$
- 3. Train large model with the new domain weights $\bar{\alpha}$

Domain	Baseline	DoReMi (280M)	Difference	Domain	Baseline	DoReMi (280M)	Difference
Pile-CC	0.1121	0.6057	+0.4936	DM Mathematics	0.0198	0.0018	-0.0180
YoutubeSubtitles	0.0042	0.0502	+0.0460	Wikipedia (en)	0.0919	0.0699	-0.0220
PhilPapers	0.0027	0.0274	+0.0247	OpenWebText2	0.1247	0.1019	-0.0228
HackerNews	0.0075	0.0134	+0.0059	Github	0.0427	0.0179	-0.0248
Enron Emails	0.0030	0.0070	+0.0040	FreeLaw	0.0386	0.0043	-0.0343
EuroParl	0.0043	0.0062	+0.0019	USPTO Backgrounds	0.0420	0.0036	-0.0384
Ubuntu IRC	0.0074	0.0093	+0.0019	Books3	0.0676	0.0224	-0.0452
BookCorpus2	0.0044	0.0061	+0.0017	PubMed Abstracts	0.0845	0.0113	-0.0732
NIH ExPorter	0.0052	0.0063	+0.0011	StackExchange	0.0929	0.0153	-0.0776
OpenSubtitles	0.0124	0.0047	-0.0077	ArXiv	0.1052	0.0036	-0.1016
Gutenberg (PG-19)	0.0199	0.0072	-0.0127	PubMed Central	0.1071	0.0046	-0.1025

Group DRO: To minimize the worst-group loss



Group DRO: To minimize the worst-group loss

$$\mathcal{R}_{\mathsf{gDRO}}(w) = \max_{g' \in \mathcal{G}} \hat{\mathbb{E}}_{(x,y,g)} \left[\ell(w; (x,y)) \mid g = g' \right]$$

average loss for each group g'
worst-group

How to minimize it at training time (online optimization)?

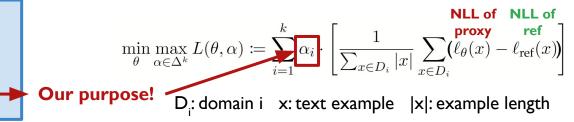
$$\min_{\theta \in \Theta} \sup_{q \in \Delta_m} \sum_{g=1}^m q_g \mathbb{E}_{(x,y) \sim P_g} [\ell(\theta; (x,y))].$$

alternating optimization

$$\begin{array}{l} \textbf{Input: Step sizes } \eta_q, \eta_\theta; P_g \text{ for each } g \in \mathcal{G} \\ \textbf{Initialize } \theta^{(0)} \text{ and } q^{(0)} \\ \textbf{for } t = 1, \ldots, T \textbf{ do} \\ g \sim \textbf{Uniform}(1, \ldots, m) \\ x, y \sim P_g \\ q' \leftarrow q^{(t-1)}; q'_g \leftarrow q'_g \exp(\eta_q \ell(\theta^{(t-1)}; (x, y))) \\ q^{(t)} \leftarrow q' / \sum_{g'} q'_{g'} \\ \theta^{(t)} \leftarrow \theta^{(t-1)} - \eta_\theta q_g^{(t)} \nabla \ell(\theta^{(t-1)}; (x, y)) \\ \textbf{end} \end{array} \right) \\ \textbf{for } d \\ \begin{array}{l} // \text{ Choose a group } g \text{ at random} \\ // \text{ Sample } x, y \text{ from group } g \\ // \text{ Update weights for group } g \\ // \text{ Renormalize } q \\ // \text{ Use } q \text{ to update } \theta \end{array} \right) \\ \textbf{end} \end{array}$$

Group DRO, the DoReMi way

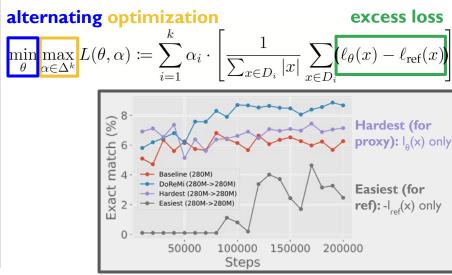
- I. Train a small reference model $p_{\theta}(x)$ with default domain weights α_{ref}
- 2. Train a small proxy model $p_{ref}(x)$ with <u>Group Distributionally</u> <u>Robust Optimization to obtain</u> new domain weights $\bar{\alpha}$



3. Train large model with the new domain weights $\bar{\alpha}$

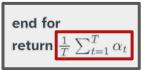
Group DRO, the DoReMi way

Require: Domain data D_1, \ldots, D_k , number of training steps T, batch size b, step size η , smoothing parameter $c \in [0, 1]$ (e.g., $c = 10^{-3}$ in our implementation). Initialize proxy weights θ_0 Initialize $\alpha_0 = \frac{1}{L}\mathbb{1}$ Sample minibatch $B = \{x_1, \ldots, x_i\}$ of size b from P_u , where $u = \frac{1}{k}\mathbb{1}$ for t from 1 to T do Let |x| be the token length of example x ($|x| \leq L$) Compute per-domain excess losses for each domain $i \in \{1, 2, \dots, k\}$ $(\ell_{\theta,j}(x) \text{ is } j\text{-th token-level loss}):$ $\lambda_t[i] \leftarrow rac{1}{\sum_{x \in B \cap D_t} |x|} \sum_{x \in B \cap D_t} \sum_{j=1}^{|x|} \max\{\ell_{ heta_{t-1},j}(x) - \ell_{ ext{ref},j}(x), 0\}$ Update (exp is entrywise): $\alpha'_t \leftarrow \alpha_{t-1} \exp(\eta \lambda_t)$ Renormalize and smooth : $\alpha_t \leftarrow (1-c) \frac{\alpha'_t}{\sum_{i=1}^k \alpha'_i [i]} + cu$ Update proxy model weights θ_t for the objective $L(\theta_{t-1}, \alpha_t)$ (using Adam, Adafactor, etc.) end for return $\frac{1}{T} \sum_{t=1}^{T} \alpha_t$

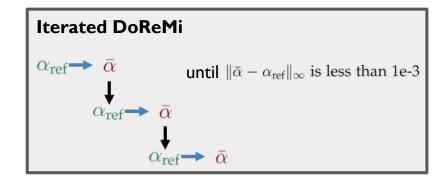


DoReMi, continued

- I. Train a small reference model $p_{\theta}(x)$ with default domain weights α_{ref}
- 2. Train a small proxy model $p_{ref}(x)$ with <u>Group</u> <u>Distributionally</u> <u>Robust</u> <u>Optimization</u> to obtain new domain weights $\bar{\alpha}$
- 3. Train large model with the new domain weights $\bar{\alpha}$



average weights $\bar{\alpha}$ over the training trajectory



Performance insights

- Perplexity over every domain
- Weights ~ downstream-tuned
 - "The results obtained on The Pile reproduce the observations recently made by the RedPjamas & RefinedWeb datasets: some components of The Pile should ideally be downsampled, and increased web data may be beneficial." <u>https://openreview.net/forum?id=IXuByUeHhd¬eId=vHaLbObUBw</u>
- Proxy model underperforms main model
 - Use main model instead of proxy model, even if the sizes are the same!
- Choose a relatively small proxy model size (280M) to save compute

The Llama 3 Herd of Models

Post-training Data

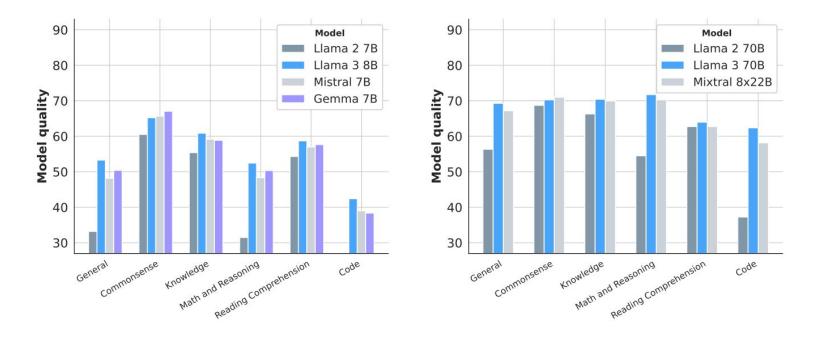
- Preference Data
 - multiple models: sample two responses from two different models for each user prompt
 - rate the strength of preference: significantly better, better, slightly better, or marginally better
 - edit the chosen response directly or prompt the model with feedback to refine its own response

Post-training Data

- SFT Data
 - Rejection sampling: sample K (10~30) outputs from the latest chat model policy for each prompt, then select the best candidate
 - Synthetic data targeting specific capabilities
 - Small amounts of human-curated data

Evaluations

 Performance of pre-trained Llama 3 8B and 70B models on pre-training benchmarks



OpenAl ol - Evaluations

• Results for the disallowed content evaluations on GPT-40, ol-preview, and ol-mini

Dataset	Metric	GPT-40	o1-preview	o1-mini
Standard Refusal Evaluation	not_unsafe	0.99	0.995	0.99
	$not_overrefuse$	0.91	0.93	0.90
Challenging Refusal Evaluation	not_unsafe	0.713	0.934	0.932
WildChat 16	not_unsafe	0.945	0.971	0.957
XSTest 17	$not_overrefuse$	0.924	0.976	0.948

Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference

Live questions. Judged by humans.

		Question Source				
		Static	Live			
Evaluation	Ground Truth	MMLU, HellaSwag, GSM-8K	Codeforces Weekly Contests			
Metric	Human Preference	MT-Bench, AlpacaEval	Chatbot Arena			

Quartien Course

Ask and vote!

Website: Imarena.ai

Total #models: 149. Total #votes: 1,951,660. Last updated: 2024-09-26.

GPT-40-2024-08-06

Qwen2.5-72b-Instruct

8

10

Code to recreate leaderboard tables and plots in this notebook. You can contribute your vote at Imarena.ai!

1264

1257

+4/-3

+8/-7

25215

6017

OpenAI

Alibaba

Proprietary

Qwen

2023/10

2024/9

Category Overall •		Apply filter Style Control Show Deprecate			Overall Questions				
					#models: 149 (100%) #votes: 1,951,660 (100%)				
Rank* (UB)	Model	Arena Score	95% CI 🔺	Votes	Organization	License 🔺	Knowledge Cutoff		
1	o1-preview	1339	+6/-7	9169	OpenAI	Proprietary	2023/10		
1	ChatGPT-40-latest (2024-09-03)	1337	+4/-4	16685	OpenAI	Proprietary	2023/10		
3	<u>o1-mini</u>	1314	+6/-5	9136	OpenAI	Proprietary	2023/10		
4	Gemini-1.5-Pro-Exp-0827	1299	+4/-3	31928	Google	Proprietary	2023/11		
4	Grok-2-08-13	1293	+4/-3	27731	XAI	Proprietary	2024/3		
6	GPT-40-2024-05-13	1285	+3/-3	93428	OpenAI	Proprietary	2023/10		
7	GPT-40-mini-2024-07-18	1272	+3/-3	33166	OpenAI	Proprietary	2023/10		
7	Claude 3.5 Sonnet	1269	+3/-3	67165	Anthropic	Proprietary	2024/4		
7	Gemini-1.5-Flash-Exp-082	1269	+3/-4	25027	Google	Proprietary	2023/11		
7	Grok-2-Mini-08-13	1268	+4/-4	24956	XAI	Proprietary	2024/3		
7	Gemini Advanced App (2024-05-14)	1266	+3/-3	52218	Google	Proprietary	Online		
7	Meta-Llama-3.1-405b- Instruct-bf16	1266	+6/-7	8787	Meta	Llama 3.1 Community	2023/12		
7	Meta-Llama-3.1-405b- Instruct-fp8	1266	+4/-4	33654	Meta	Llama 3.1 Community	2023/12		

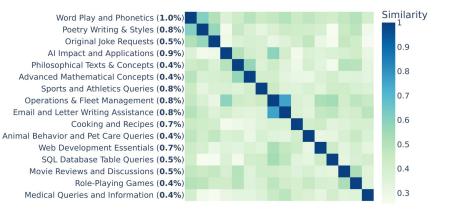
The leaderboard

- Pairwise comparisons
 BT scores & rankings
- Active sampling Which model pair to choose for

this round?

Behind the scenes...

- Detecting anomalous users This user's ratings ↔ historical distribution
- Topic modeling UMAP 🔁 HDBSCAN 🛃 GPT-4
- Quality validation
 - Prompts Challenging enough;
 GPT-4 can also make the judge's job
 - Voting Agreement with experts' choice



Discussion

- Other possible ways to improve pre-training data quality?
- Is there a better way to get high and low quality datasets?
- What are the problems of Chatbot Arena?