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Introduction

Data

o |I5T multilingual tokens, compared to |.8T tokens for Llama 2.

o Development of more careful pre-processing and curation pipelines.

Scale

© 405B trainable parameters on 15.6T text tokens.
Managing complexity

o Standard dense Transformer model architecture.

o Simple post-training procedure.
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Introduction

® Performance
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Category Benchmark pr} (U] = = = (U] = 4 (U] 0} (3}
MMLU (s-shoty 69.4 723 61.1 | 836 769 70.7 | 87.3 82.6 85.1 89.1 89.9
General MMLU (o-shot, cor) 73.0 72.3% 60.5 | 86.0 79.9 69.8 | 88.6 78.7¢ 854 887 88.3
MMLU-Pro (s-shot, cor) 48.3 — 36.9 | 66.4 56.3 49.2 | 73.3 62.7 64.8 74.0 77.0
IFEval 80.4 736 57.6 | 875 727 69.9 | 88.6 851 84.3  85.6 88.0
Code HumanEval (o-shot) 72.6 54.3 40.2 | 80.5 75.6 68.0 | 89.0 73.2 86.6 90.2 92.0
MBPP EvalPlus (o-shot) 72.8 Z1.T 49.5 | 86.0 78.6 82.0 | 88.6 72.8 83.6 87.8 90.5
Math GSMBK  (s-shot, coT) 84.5 76.7 532 | 951 88.2 81.6 | 96.8 92.3 942  96.1 96.4
MATH (o-shot, cor) 51.9 44.3 13.0 | 68.0 54.1 43.1 | 73.8 41.1 64.5 76.6 711
— ARC Challenge (o-shot) 83.4 876 742|948 887 83.7|969 946 96.4  96.7 96.7
GPQA (0-shot, com) 32.8 — 28.8 | 46.7 333 30.8 | 51.1 N 414  53.6 59.4
Tool use BFCL 76.1 - 60.4 | 848 - 859 | 88.5 86.5 88.3  80.5 90.2
Nexus 38.5 30.0 24.7 | 56.7 485 37.2 | 587 — 50.3  56.1 45.7
ZeroSCROLLS/QuALITY | 81.0 — — 90.5 - = 95.2 = 952 905 90.5

Long context InfiniteBench/En.MC 65.1 - = 78.2 = - 83.4 = 72.1 82.5 =
NIH/Multi-needle 98.8 — - 975 - = 98.1 = 100.0 100.0 90.8
Multilingual MGSM (o-shot, cot) 68.9 53.2 299 | 869 71.1 514 | 91.6 - 85.9 90.5 91.6




General Overview

Development of our Llama 3 language models
© Language model pre-training: training data, architecture, training fra, details.
O Language model post-training.
Adding multi-modal capabilities to Llama 3
© Multi-modal encoder pre-training.
o Vision adapter training.

o Speech adapter training.
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Pre-Training Data

® Web Data Curation

O

©)

©)

Pll and safety filtering: personally Identifiable Information.

Text extraction and cleaning: code, mathematical formulas, markdown.
De-duplication: URL, document, line.

Heuristic filtering: KL divergence.

Model-based quality filtering

Code and reasoning data.

Multilingual data
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Pre-Training Data

Determining the Data Mix
o Knowledge classification.
o Scaling laws for data mix.

Annealing Data

O Using annealing to assess data quality.
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Model Architecture

e A few small modifications compared to Llama 2:

O  Grouped query attention.

O Using an attention mask to prevent self-attention between different

documents .

O Vocabulary with 128K tokens.

O It increases the RoPE base frequency hyperparameter to 500,000.
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Model Architecture

Overview of the key hyperparameters of Llama 3.

8B 70B 405B
Layers 32 80 126
Model Dimension 4,096 8192 16,384
FFN Dimension 14,336 28,672 53,248
Attention Heads 32 64 128
Key/Value Heads 8 8 8
Peak Learning Rate 3x107% 15x107*% 8x107°
Activation Function SwiGLU
Vocabulary Size 128,000

Positional Embeddings

RoPE (6 = 500, 000)

P9



Model Architecture

Scaling Laws

O  Correlation between the compute-optimal model’s negative log-likelihood on
downstream tasks and the training FLOPs.
O  Correlating the negative log-likelihood on downstream tasks with task

accuracy.



Scaling Laws

Model Architecture

Validation Loss
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Scaling Laws

Model Architecture

- Fitted Line, a = 0.537, A = 0.299
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Model Architecture

® Scaling Laws
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Infrastructure, Scaling, and Efficiency

Training Infrastructure
Parallelism for Model Scaling
Collective Communication

Reliability and Operational Challenges



Infrastructure, Scaling, and Efficiency

Training Infrastructure

e Compute: 16K HI100, scheduled using MAST

e Storage: 240PB, 7500 servers with SSDs, 2TB/s(peak 7TB/s)

e Network: 405B RoCE(Ethernet), small models(Infiniband), 400Gbps
o Network topology: 3layers, 24K GPUs(use |16K)
©0 Load balancing: |6 network flows, Enhanced-ECMP

o Congestion control: deep-buffer switches for congestion and slow servers



Infrastructure, Scaling, and Efficiency

Parallelism for Model Scaling: 4D parallelism [TP, CP, PP, DP]
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Infrastructure, Scaling, and Efficiency

Parallelism for Model Scaling: 4D parallelism

® Tensor Parallelism
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= model weight tensors
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Infrastructure, Scaling, and Efficiency

Parallelism for Model Scaling: 4D parallelism

e Pipeline Parallelism

1/

= a layer of weights
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Infrastructure, Scaling, and Efficiency

Parallelism for Model Scaling: 4D parallelism

D + = full long sequence input

e Context Parallelism
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Infrastructure, Scaling, and Efficiency

Parallelism for Model Scaling: 4D parallelism

PP

Data Parallelism
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= data input one time
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Parallelism for Model Scaling: 4D parallelism
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Infrastructure, Scaling, and Efficiency

Batch size constraint: batch size divisible by the number of pipeline stages

Memory imbalance: the first stage consumes more memory for the

embedding and the warm-up micro-batches

Computation imbalance: after the last layer, output and loss calculation

4 0 1 Yl 0 K

3 40 2

Stage 0-3 forward

'I 5

2 3 3 4

Stage 4-7 forward

©

. Stage 0-3 backward

. Stage 4-7 backward

Pipeline Parallelism: divided by layers, mini batch to micro batch

)
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Infrastructure, Scaling, and Efficiency

Parallelism for Model Scaling: 4D parallelism

e Context Parallelism: sequence divided, all-gather

o  All-gather the key (K) and value (V) tensors, and then compute attention
output for the local query (Q)
o Support different types of attention masks (document mask)

O Latency is small as the communicated K andV tensors are much smaller

than Q tensor due to the use of GQA



Collective Communication

Reliability and Operational Challenges

Infrastructure, Scaling, and Efficiency

Nvidia’s NCCL library: NCCLX

Higher than 90% effective training time

54 days, 466 job interruptions

GPU issues 58.7%

Component Category Interruption Count % of Interruptions
Faulty GPU GPU 148 30.1%
GPU HBM3 Memory GPU 72 17.2%
Software Bug Dependency 54 12.9%
Network Switch/Cable Network 35 8.4%
Host Maintenance ng e 32 7.6%
Maintenance
GPU SRAM Memory GPU 19 4.5%
GPU System Processor GPU jlirg 4.1%
NIC Host 7 1.7%
NCCL Watchdog Timeouts Unknown 7 1.7%
Silent Data Corruption GPU 6 1.4%
GPU Thermal Interface + Sensor GPU 6 1.4%
SSD Host 3 0.7%
Power Supply Host 3 0.7%
Server Chassis Host 2 0.5%
10 Expansion Board Host 2 0.5%
Dependency Dependency 2 0.5%
CPU Host 2 0.5%
System Memory Host 2 0.5%




Training Recipe
Initial Pre-Training

Long Context Pre-Training

Annealing
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Training Recipe
Initial Pre-Training
® Learning rate:8 x 10-5,a linear warm up of 8,000 steps, and a cosine schedule
decaying to 8 X 10—7 over 1,200,000 steps
e Batch size and sequence:
o Initial batch size of 4M tokens to 8M after pre-training 252M tokens
o Sequences of length 4,096 to 8,192 tokens after pre-training 252M tokens

o Double the batch size again to |6M after pre-training on 2.87T tokens.

e Adjust the data mix: increase no-Eng, math and recent web data, downsample the bad



Training Recipe
Long Context Pre-Training

e Train on long sequences to support context windows of up to 128K tokens

o The compute in self-attention layers grows quadratically in the sequence length.
® Assess successful adaptation:

o Short-context evaluations

o “needle in a haystack” tasks up to that length
e Six stages: the original 8K context window to the final 128K context window

o  800B training tokens



Training Recipe

Annealing

Final high-quality 40M tokens

Learning Rate: linearly annealed the learning rate to 0
Context length: maintaining a context length of 128K tokens
Data mix: upsample data sources of very high quality

Checkpoints: compute the average of model checkpoints



A

N

9

Post-Training

Collected Prompts

K Generations per

Prompt

l

Best models from
previous rounds

DPO Training '
Reward Model —>  Rejection Sampling — Final DPO Model

Pairwise Annotated and Specialized
Specialized Per-Capability Binary Per-capability
Preference Data SFT data
J
Reward model training DPO Training

:  Best model for next round

| . Model
. Data



Gemma 2: Improving Open Language Models at a
Practical Size

The 27B on |3 trillion tokens, the 9B model on 8 trillion tokens, and the 2B on 2
trillion tokens.(Llama I5T tokens)
Not trained specifically for multilingual capabilities(Llama is multilingual)
SentencePiece tokenizer
Train the 2B and 9B models with knowledge distillation

O the one-hot vector seen at each token — the distribution of potential next

tokens computed from a large model

H}%HZ —PT(X | xc) logPS(x | xC))



Llama3.2 came out yesterday

e Smaller
e Multimodal

e Openly available
In the future, bigger or smaller?

Other possible abilities of LLM?

Discussion
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