

DATA 8005 Advanced Natural Language Processing

The Llama 3 Herd of Models: Pre-training

Yujia Zhang Zhiheng Liu

Fall 2024

Contents

- Introduction
- Pre-Training Data
- Model Architecture
- Infrastructure, Scaling, and Efficiency
- Training Recipe

Introduction

• Data

- 15T multilingual tokens, compared to 1.8T tokens for Llama 2.
- Development of more careful pre-processing and curation pipelines.

• Scale

- 405B trainable parameters on 15.6T text tokens.
- Managing complexity
 - Standard dense Transformer model architecture.
 - Simple post-training procedure.

Introduction

• Performance

Category	Benchmark	Llama 3 8B	Gemma 2 9B	Mistral 7B	Llama 3 70B	Mixtral 8x22B	GPT 3.5 Turbo	Llama 3 405B	Nemotron 4 340B	GPT-4 (0125)	GPT-40	Claude 3.5 Sonnet
General	MMLU (5-shot)	69.4	72.3	61.1	83.6	76.9	70.7	87.3	82.6	85.1	89.1	89.9
	MMLU (0-shot, CoT)	73.0	72.3^{trian}	60.5	86.0	79.9	69.8	88.6	78.7 [⊲]	85.4	88.7	88.3
	MMLU-Pro (5-shot, CoT)	48.3	73.6	30.9 57.6	66.4 87.5	50.3 79.7	49.2 60.0	73.3 88.6	62.7 85.1	04.8 84.3	74.0 85.6	77.0
Code	HumonEvol	72.6	54.3	40.2	80.5	75.6	68.0	80.0	73.9	86.6	00.2	93.0
	MBPP EvalPlus (0-shot)	72.0	71 7	40.2	86.0	78.6	08.0 82.0	88.6	73.2	83.6	90.2 87.8	90.5
Math	CSM8K (0.1.1.G.T.)	94.5	76.7	53.0	95.0	88.2	81.6	96.8	02.30	04.2	06.1	96.1
	MATH (0-shot CoT)	51.9	44.3	13.0	68.0	54 1	43.1	73.8	41.1	64.5	76.6	50.4 71.1
Reasoning	ABC Challenge (0-shot)	83.4	87.6	74.2	94.8	88.7	83.7	96.9	94.6	96.4	96.7	96.7
	GPQA (0-shot, CoT)	32.8	_	28.8	46.7	33.3	30.8	51.1	_	41.4	53.6	59.4
Tool use	BFCL	76.1	-	60.4	84.8	-	85.9	88.5	86.5	88.3	80.5	90.2
	Nexus	38.5	30.0	24.7	56.7	48.5	37.2	58.7	_	50.3	56.1	45.7
Long context	ZeroSCROLLS/QuALITY	81.0	-	-	90.5	-	-	95.2	-	95.2	90.5	90.5
	InfiniteBench/En.MC	65.1	-	-	78.2	-	-	83.4	_	72.1	82.5	-
	NIH/Multi-needle	98.8	-	-	97.5	-	_	98.1	-	100.0	100.0	90.8
Multilingual	MGSM (0-shot, CoT)	68.9	53.2	29.9	86.9	71.1	51.4	91.6	-	85.9	90.5	91.6

General Overview

- Development of our Llama 3 language models
 - Language model pre-training: training data, architecture, training fra, details.
 - Language model post-training.
- Adding multi-modal capabilities to Llama 3
 - Multi-modal encoder pre-training.
 - Vision adapter training.
 - Speech adapter training.

Pre-Training Data

- Web Data Curation
 - PII and safety filtering: personally Identifiable Information.
 - Text extraction and cleaning: code, mathematical formulas, markdown.
 - De-duplication: URL, document, line.
 - Heuristic filtering: KL divergence.
 - Model-based quality filtering
 - Code and reasoning data.
 - Multilingual data

Pre-Training Data

- Determining the Data Mix
 - Knowledge classification.
 - Scaling laws for data mix.
- Annealing Data
 - Using annealing to assess data quality.

- A few small modifications compared to Llama 2:
 - Grouped query attention.
 - Using an attention mask to prevent self-attention between different documents .
 - \odot Vocabulary with 128K tokens.
 - \circ It increases the RoPE base frequency hyperparameter to 500,000.

• Overview of the key hyperparameters of Llama 3.

	8B	70B	405B			
Layers	32	80	126			
Model Dimension	$4,\!096$	8192	$16,\!384$			
FFN Dimension	$14,\!336$	$28,\!672$	$53,\!248$			
Attention Heads	32	64	128			
Key/Value Heads	8	8	8			
Peak Learning Rate	$3 imes 10^{-4}$	$1.5 imes 10^{-4}$	$8 imes 10^{-5}$			
Activation Function		SwiGLU				
Vocabulary Size		$128,\!000$				
Positional Embeddings	RoPE ($\theta = 500,000$)					

- Scaling Laws
 - Correlation between the compute-optimal model's negative log-likelihood on downstream tasks and the training FLOPs.
 - Correlating the negative log-likelihood on downstream tasks with task accuracy.

• Scaling Laws

Scaling law IsoFLOPs curves

• Scaling Laws

 \equiv

• Scaling Laws

=

- Training Infrastructure
- Parallelism for Model Scaling
- Collective Communication
- Reliability and Operational Challenges

Training Infrastructure

- Compute: I6K H100, scheduled using MAST
- Storage: 240PB, 7500 servers with SSDs, 2TB/s(peak 7TB/s)
- Network: 405B RoCE(Ethernet), small models(Infiniband), 400Gbps
 - Network topology: 3layers, 24K GPUs(use 16K)
 - Load balancing: I6 network flows, Enhanced-ECMP
 - Congestion control: deep-buffer switches for congestion and slow servers

Parallelism for Model Scaling: 4D parallelism [TP, CP, PP, DP]

DP

Parallelism for Model Scaling: 4D parallelism

• Tensor Parallelism

 GPU 10
 GPU 11

 TP0
 CP1
 PP0
 DP1
 TP1
 CP1
 PP0
 DP1

 GPU 8
 GPU 9
 GPU 9
 TP1
 CP0
 PP0
 DP1
 TP1
 CP0
 DP1

+

= model weight tensors

Parallelism for Model Scaling: 4D parallelism

• Pipeline Parallelism

= a layer of weights

+

Parallelism for Model Scaling: 4D parallelism

• Context Parallelism

= full long sequence input

+

Parallelism for Model Scaling: 4D parallelism

• Data Parallelism

= data input one time

Parallelism for Model Scaling: 4D parallelism

- Pipeline Parallelism: divided by layers, mini batch to micro batch
 - Batch size constraint: batch size divisible by the number of pipeline stages
 - Memory imbalance: the first stage consumes more memory for the embedding and the warm-up micro-batches
 - Computation imbalance: after the last layer, output and loss calculation

Parallelism for Model Scaling: 4D parallelism

- Context Parallelism: sequence divided, all-gather
 - All-gather the key (K) and value (V) tensors, and then compute attention output for the local query (Q)
 - Support different types of attention masks (document mask)
 - Latency is small as the communicated K and V tensors are much smaller than Q tensor due to the use of GQA

Collective Communication

• Nvidia's NCCL library: NCCLX

Reliability and Operational Challenges

- Higher than 90% effective training time
- 54 days, 466 job interruptions
- GPU issues 58.7%

Component	Category	Interruption Count	% of Interruptions	
Faulty GPU	GPU	148	30.1%	
GPU HBM3 Memory	GPU	72	17.2%	
Software Bug	Dependency	54	12.9%	
Network Switch/Cable	Network	35	8.4%	
Host Maintenance	Unplanned Maintenance	32	7.6%	
GPU SRAM Memory	GPU	19	4.5%	
GPU System Processor	GPU	17	4.1%	
NIC	Host	7	1.7%	
NCCL Watchdog Timeouts	Unknown	7	1.7%	
Silent Data Corruption	GPU	6	1.4%	
GPU Thermal Interface $+$ Sensor	GPU	6	1.4%	
SSD	Host	3	0.7%	
Power Supply	Host	3	0.7%	
Server Chassis	Host	2	0.5%	
IO Expansion Board	Host	2	0.5%	
Dependency	Dependency	2	0.5%	
CPU	Host	2	0.5%	
System Memory	Host	2	0.5%	

- Initial Pre-Training
- Long Context Pre-Training
- Annealing

Initial Pre-Training

- Learning rate: 8 × 10-5, a linear warm up of 8,000 steps, and a cosine schedule decaying to 8 × 10-7 over 1,200,000 steps
- Batch size and sequence:
 - Initial batch size of 4M tokens to 8M after pre-training 252M tokens
 - Sequences of length 4,096 to 8,192 tokens after pre-training 252M tokens
 - Double the batch size again to 16M after pre-training on 2.87T tokens.
- Adjust the data mix: increase no-Eng, math and recent web data, downsample the bad

Long Context Pre-Training

- Train on long sequences to support context windows of up to 128K tokens
 - The compute in self-attention layers grows quadratically in the sequence length.
- Assess successful adaptation:
 - Short-context evaluations
 - "needle in a haystack" tasks up to that length
- Six stages: the original 8K context window to the final 128K context window
 - 800B training tokens

Annealing

- Final high-quality 40M tokens
- Learning Rate: linearly annealed the learning rate to 0
- Context length: maintaining a context length of 128K tokens
- Data mix: upsample data sources of very high quality
- Checkpoints: compute the average of model checkpoints

Post-Training

Gemma 2: Improving Open Language Models at a Practical Size

- The 27B on 13 trillion tokens, the 9B model on 8 trillion tokens, and the 2B on 2 trillion tokens.(Llama 15T tokens)
- Not trained specifically for multilingual capabilities(Llama is multilingual)
- SentencePiece tokenizer
- Train the 2B and 9B models with knowledge distillation
 - the one-hot vector seen at each token \rightarrow the distribution of potential next tokens computed from a large model

$$\min_{P_S}\sum_{x}-P_T(x\mid x_c)\log P_S(x\mid x_c),$$

Discussion

Llama3.2 came out yesterday

- Smaller
- Multimodal
- Openly available

In the future, bigger or smaller?

Other possible abilities of LLM?