
DATA 8005 Advanced Natural Language Processing

Many materials from CSE447@UW (Taylor Sorensen and Jaehun Jung) and COS484@Princeton with special thanks!

Lecture 3: Introduction to LLMs

Fall 2024

Lecture 3: Tokenization2

Announcements

• Sign up for final projects
• In-class presentation: by Sep 22
• Final projects: by Oct 4

Neural language models: generation

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation4

Source Sentence: 새해 복 많이 받으세요!

Reference Translations:
1. Happy new year!
2. Wish you a great year ahead!
3. Have a prosperous new year!

The output space is not diverse.

Categorization of NLG tasks

Machine
Translation Summarization

Spectrum of open-endedness for NLG tasks

Categorization of NLG tasks

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation5

Machine
Translation Summarization Task-driven

Dialog
Chit-Chat
Dialog

Spectrum of open-endedness for NLG tasks

Input: Hey, how are you doing?

Reference Outputs:
1. Good, you?
2. I just heard an exciting news, do you want to hear it?
3. Thanks for asking! Barely surviving my homeworks.

The output space is getting more diverse...

Categorization of NLG tasks

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation6

Machine
Translation Summarization Task-driven

Dialog
Chit-Chat
Dialog

Spectrum of open-endedness for NLG tasks

Input: Write a story about three little pigs?

Reference Outputs:
... (so may options)...

The output space is extremely diverse.

Story
Generation

Categorization of NLG tasks

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation7

Machine
Translation Summarization Task-driven

Dialog
Chit-Chat
Dialog

Less open-ended generation: the input mostly determines the correct output generation.

More open-ended generation: the output distribution still has high degree of freedom.

Remark: One way of formalizing categorization is entropy.
Tasks with different characteristics require different decoding and/or training approaches!

Story
Generation

Less open-ended More open-ended

How to control open-endedness in ChatGPT?

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation8

ChatGPT API web interface

Natural Language Processing - CSE 517 / CSE 447 9

Neural language models

• Input: sequences of words (or tokens)
• Output: probability distribution over the next word (token)

START I went to the park . STOP

Neural Network

The 3
When 2.5%
They 2%

… …
I 1%

… …
Banana 0.1%

think 11%
was 5%
went 2%
am 1%
will 1%
like 0.5%
… …

to 35%
back 8%
into 5%

through 4%
out 3%
on 2%
… …%

the 29%
a 9%

see 5%
my 3%
bed 2%

school 1%
… …

bathroo
m

3%
doctor 2%

%hospita
l

2%
store 1.5%

… …
park 0.5%
… …

and 14%
with 9

, 8%
to 7%
… …
. 6%

… …

I 21%
It 6

The 3%
There 3%

… …
STOP 1%

… …

<latexit sha1_base64="MftO+SMqnPwqfD2tsYonKEJyGUQ=">AAAB+nicbVDLTsJAFJ36RHwVXbppJCa4Ia3xtUTduETllUBDpsMUJkynzcytQgqf4saFxrj1S9z5Nw7QhYInucnJOffm3nu8iDMFtv1tLC2vrK6tZzaym1vbO7tmbq+mwlgSWiUhD2XDw4pyJmgVGHDaiCTFgcdp3evfTPz6I5WKhaICw4i6Ae4K5jOCQUttMxcVBqMW0AEkD5Wr+8r4uG3m7aI9hbVInJTkUYpy2/xqdUISB1QA4VippmNH4CZYAiOcjrOtWNEIkz7u0qamAgdUucn09LF1pJWO5YdSlwBrqv6eSHCg1DDwdGeAoafmvYn4n9eMwb90EyaiGKggs0V+zC0IrUkOVodJSoAPNcFEMn2rRXpYYgI6rawOwZl/eZHUTorOefHs7jRfuk7jyKADdIgKyEEXqIRuURlVEUFP6Bm9ojdjZLwY78bHrHXJSGf20R8Ynz/UPJO7</latexit>

p(x|START)
<latexit sha1_base64="WcUxOGfkP4cx+E9QpV1PwAaAgeg=">AAAB/HicbVDJTgJBEO1xRdxGOXrpSEzwQmaM2xH1ojdUtgQmpKfpgQ49S7prDGTEX/HiQWO8+iHe/BsbmIOCL6nk5b2qVNVzI8EVWNa3sbC4tLyymlnLrm9sbm2bO7s1FcaSsioNRSgbLlFM8IBVgYNgjUgy4ruC1d3+1divPzCpeBhUYBgxxyfdgHucEtBS28xFhcFjC9gAkvvKxV0F34wO22beKloT4HlipySPUpTb5lerE9LYZwFQQZRq2lYETkIkcCrYKNuKFYsI7ZMua2oaEJ8pJ5kcP8IHWulgL5S6AsAT9fdEQnylhr6rO30CPTXrjcX/vGYM3rmT8CCKgQV0usiLBYYQj5PAHS4ZBTHUhFDJ9a2Y9ogkFHReWR2CPfvyPKkdFe3T4sntcb50mcaRQXtoHxWQjc5QCV2jMqoiioboGb2iN+PJeDHejY9p64KRzuTQHxifP8oVlDg=</latexit>

p(x|START I)
<latexit sha1_base64="LRjKiWw0jRv+buME4YuEQgqShlY=">AAACAXicbVDJSgNBFOyJW4zbqBfBS2MQ4iXMiNsx6MVjBLNAZgg9PT1Jk56F7jeaMMaLv+LFgyJe/Qtv/o2d5aCJBQ1F1Stev/ISwRVY1reRW1hcWl7JrxbW1jc2t8ztnbqKU0lZjcYilk2PKCZ4xGrAQbBmIhkJPcEaXu9q5DfumFQ8jm5hkDA3JJ2IB5wS0FLb3EtK/QfsUD8GhR1gfcjuWQTDo7ZZtMrWGHie2FNSRFNU2+aX48c0DXWaCqJUy7YScDMigVPBhgUnVSwhtEc6rKVpREKm3Gx8wRAfasXHQSz1iwCP1d+JjIRKDUJPT4YEumrWG4n/ea0Uggs341GSAovoZFGQCgwxHtWBfS4ZBTHQhFDJ9V8x7RJJKOjSCroEe/bkeVI/Lttn5dObk2LlclpHHu2jA1RCNjpHFXSNqqiGKHpEz+gVvRlPxovxbnxMRnPGNLOL/sD4/AFzzZbq</latexit>

p(x| · · ·went)
<latexit sha1_base64="67dkCAqZgv/VHFmTH8BhrvEriJg=">AAACAHicbVDJTgJBEO3BDXFDPXjw0pGY4IXMGLcj0YtHTGRJGEJ6mgI69CzprjGQkYu/4sWDxnj1M7z5NzYwBwVfUsnLe1WpqudFUmi07W8rs7S8srqWXc9tbG5t7+R392o6jBWHKg9lqBoe0yBFAFUUKKERKWC+J6HuDW4mfv0BlBZhcI+jCFo+6wWiKzhDI7XzB1Fx+Ehd3glRUxdhiAn2YXzSzhfskj0FXSROSgokRaWd/3I7IY99CJBLpnXTsSNsJUyh4BLGOTfWEDE+YD1oGhowH3QrmT4wpsdG6dBuqEwFSKfq74mE+VqPfM90+gz7et6biP95zRi7V61EBFGMEPDZom4sKYZ0kgbtCAUc5cgQxpUwt1LeZ4pxNJnlTAjO/MuLpHZaci5K53dnhfJ1GkeWHJIjUiQOuSRlcksqpEo4GZNn8krerCfrxXq3PmatGSud2Sd/YH3+AIfzlmM=</latexit>

p(x| · · · the)
<latexit sha1_base64="rGCue0TUWf3/AXEt1i3jVqq9cWE=">AAAB/3icbVDJSgNBEO1xjXGLCl68NAYhXsKMuB2DXjxGMAskQ+jp6SRNerqH7hpJmOTgr3jxoIhXf8Obf2NnOWjig4LHe1VU1QtiwQ247reztLyyurae2chubm3v7Ob29qtGJZqyClVC6XpADBNcsgpwEKwea0aiQLBa0Lsd+7VHpg1X8gEGMfMj0pG8zSkBK7Vyh3GhP8RNGiowuAmsDymo0Wkrl3eL7gR4kXgzkkczlFu5r2aoaBIxCVQQYxqeG4OfEg2cCjbKNhPDYkJ7pMMalkoSMeOnk/tH+MQqIW4rbUsCnqi/J1ISGTOIAtsZEeiaeW8s/uc1Emhf+ymXcQJM0umidiIwKDwOA4dcMwpiYAmhmttbMe0STSjYyLI2BG/+5UVSPSt6l8WL+/N86WYWRwYdoWNUQB66QiV0h8qogigaomf0it6cJ+fFeXc+pq1LzmzmAP2B8/kDy8aV+w==</latexit>

p(x| · · · to)
<latexit sha1_base64="lCxZUSI2bDJyt4tQii3hgQuEeiE=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSxC3ZREfC2LblxWsA9oQplMJu3QyYOZG2mJdeOvuHGhiFv/wp1/47TNQlsPXDiccy/33uMlgiuwrG9jYXFpeWW1sFZc39jc2jZ3dhsqTiVldRqLWLY8opjgEasDB8FaiWQk9ARrev3rsd+8Z1LxOLqDYcLckHQjHnBKQEsdcz8pDx6wQ/0YFHaADSBLiOyPjjtmyapYE+B5YuekhHLUOuaX48c0DVkEVBCl2raVgJsRCZwKNio6qWIJoX3SZW1NIxIy5WaTD0b4SCs+DmKpKwI8UX9PZCRUahh6ujMk0FOz3lj8z2unEFy6GY+SFFhEp4uCVGCI8TgO7HPJKIihJoRKrm/FtEckoaBDK+oQ7NmX50njpGKfV85uT0vVqzyOAjpAh6iMbHSBqugG1VAdUfSIntErejOejBfj3fiYti4Y+cwe+gPj8wdbVJba</latexit>

p(x| · · · park)
<latexit sha1_base64="MUKBCiIEN6kov3qjSDDj2XGDctE=">AAACDnicbVC5TgMxEPVyhnAtUNJYREihiXYRVxmggS5ADqQkirzOhFjxHrJnIdGSL6DhV2goQIiWmo6/wTkKIDzJ0tN7M+OZ50VSaHScL2tqemZ2bj61kF5cWl5ZtdfWyzqMFYcSD2Worj2mQYoASihQwnWkgPmehIrXOR34lVtQWoRBEXsR1H12E4iW4AyN1LC3o2z3vobQxeSqeHxZpOf0DgKkGFJsA42Y6uT6Ow074+ScIegkccckQ8YoNOzPWjPksW9Gccm0rrpOhPWEKRRcQj9dizVEjHfYDVQNDZgPup4Mz+nTbaM0aStU5plVhurPjoT5Wvd8z1T6DNv6rzcQ//OqMbaO6okIohgh4KOPWrEcHmuyoU2hgKPsGcK4EmZXyttMMY4mwbQJwf178iQp7+bcg9z+xV4mfzKOI0U2yRbJEpcckjw5IwVSIpw8kCfyQl6tR+vZerPeR6VT1rhng/yC9fENjmebKg==</latexit>

p(x|START I went to the park.)

Autoregressive NLG with LLMs

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation10

• In autoregressive (decoder-only) LLMs, at each time step t, our model takes in a
sequence of tokens as input and outputs a new token, {y}<t ̂yt

...
yt−4 yt−3 yt−2 yt−1

̂yt ̂yt+1

̂yt ̂yt+1

̂yt+2 ...

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation11

• At each time step t, our model computes a vector of scores for each token in our
vocabulary, :

• Then, we compute a probability distribution over using these scores:

S ∈

P w ∈ V

S = f({y<t}; θ)
 is your modelf(⋅ ; θ)

P(yt = w |{y<t}) =
exp(Sw)

∑w′ ∈V exp(Sw′
)

Autoregressive NLG with LLMs

A look at a single step

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation12

... yt−4 yt−3 yt−2 yt−1

S

Softmax

P(yt |{y<t})

• At each time step t, our model computes a vector of scores for each token in
our vocabulary, . Then, we compute a probability distribution over

 using these scores:
S ∈ P

w ∈ V

Recap: training and inference LLMs

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation13

• At inference time, our decoding algorithm defines a function to select a token
from this distribution:

• At train time, we train the model to minimize the negative log-likelihood of the
next token in the given sequence:

g

̂yt = g(P(yt |{y<t}))
 is your decoding algorithmg(⋅)

Lt = − log P(y*t |{y*<t})
Remark:
• This is just a classification task where each as a class.
• The label at each step is in the training sequence.
• This token is often called "gold" or "ground-truth" token.
• This algorithm is often called "teacher-forcing".

w ∈ V
y*t

• An "obvious" decoding algorithm is to greedily choose the token with the highest probability at
each time step

Recap: Maximum Likelihood Training

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation14

• Trained to generate the next word given a set of preceding words y*t {y*}<t

L = − log P(y*1 |y*0)

y*0

y*1

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation15

L = − (log P(y*1 |y*0) + log P(y*2 |y*0 , y*1))

y*0

y*1

y*1

y*2

• Trained to generate the next word given a set of preceding words y*t {y*}<t

Recap: Maximum Likelihood Training

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation16

L = − (log P(y*1 |y*0) + log P(y*2 |y*0 , y*1) + log P(y*3 |y*0 , y*1 , y*2))

y*0

y*1

y*1

y*2 y*3

y*2

• Trained to generate the next word given a set of preceding words y*t {y*}<t

Recap: Maximum Likelihood Training

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation17

y*0

y*1

L = −
T

∑
t=1

log P(y*t |{y*}<t)

y*1

y*2 y*3

y*2 ...

... y*T−2 y*T−1 y*T

y*T−2 y*T−1 y*T−1

<END>

• Trained to generate the next word given a set of preceding words y*t {y*}<t

Recap: Maximum Likelihood Training

Decoding from LLMs

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation18

• At each time step t, our model computes a vector of scores for each token in our
vocabulary, :

• Then, we compute a probability distribution over using these scores:

• Our decoding algorithm defines a function to select a token from this distribution:

S ∈

P w ∈ V

S = f({y<t}; θ)
 is your modelf(⋅ ; θ)

P(yt = w |{y<t}) =
exp(Sw)

∑w′ ∈V exp(Sw′
)

̂yt = g(P(yt |{y<t}))
 is your decoding algorithmg(⋅)

Note: we decode token by token from LLMs after they are trained (during inference)

How to find the most likely text to generate?

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation19

• Obvious method: Greedy Decoding
• Selects the highest probability token according to

• Beam Search

• Also aims to find the string with the highest probability, but with a wider exploration of
candidates.

P(yt |y<t)

̂yt = argmaxw∈V P(yt = w |y<t)

Greedy Decoding vs. Beam Search

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation20

• Greedy Decoding
• Choose the "currently best" token at each time step

The

dog

and

runs

has

woman

house

guy

car

is

drives

turns

0.5

0.4

0.4

0.3

0.3

0.1

0.3

0.5

0.2

0.05

0.05

0.9

Step 0 (Initial):
The

great

Greedy Decoding vs. Beam Search

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation21

• Greedy Decoding
• Choose the "currently best" token at each time step

The

dog

and

runs

has

woman

house

guy

car

is

drives

turns

0.5

0.4

0.4

0.3

0.3

0.1

0.3

0.5

0.2

0.05

0.05

0.9

Step 1:
The great (Score: 0.5)

great

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation22

• Greedy Decoding
• Choose the "currently best" token at each time step

The

dog

and

runs

has

woman

house

guy

car

is

drives

turns

0.5

0.4

0.4

0.3

0.3

0.1

0.3

0.5

0.2

0.05

0.05

0.9

Step 2:
The great woman (score: 0.5 + 0.4)

great

Greedy Decoding vs. Beam Search

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation23

• Beam Search (in this example, beam_width = 2)
• At each step, retain 2 hypotheses with the highest probability

The

dog

great

and

runs

has

woman

house

guy

car

is

drives

turns

0.5

0.4

0.4

0.3

0.3

0.1

0.3

0.5

0.2

0.05

0.05

0.9

Step 0 (Initial):
The

Greedy Decoding vs. Beam Search

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation24

• Beam Search (in this example, beam_width = 2)
• At each step, retain 2 hypotheses with the highest probability

The

dog

and

runs

has

woman

house

guy

car

is

drives

turns

0.5

0.4

0.4

0.3

0.3

0.1

0.3

0.5

0.2

0.05

0.05

0.9

Step 1 hypotheses:
The great (score: 0.5)
The dog (score: 0.4)

great

Greedy Decoding vs. Beam Search

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation25

• Beam Search (in this example, beam_width = 2)
• At each step, retain 2 hypotheses with the highest probability

The

dog

and

runs

has

woman

house

guy

car

is

drives

turns

0.5

0.4

0.4

0.3

0.3

0.1

0.3

0.5

0.2

0.05

0.05

0.9

Step 2 hypotheses:
The dog has (score: 0.4 + 0.9)
The great woman (score: 0.5 + 0.4)

great

Greedy Decoding vs. Beam Search

• Beam Search

• A form of best-first-search for the most likely string, but with a wider exploration of
candidates.

• Compared to greedy decoding, beam search gives a better approximation of
brute-force search over all sequences

• A small overhead in computation due to beam width
Time complexity: O(beam width * vocab size * generation length)

* Naive brute-force search: O(vocab size ^ generation length), hence intractable!

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation26

How to find the most likely text to generate?

Note: Overall, greedy / beam search is widely used for low-entropy tasks like MT and summarization.
But, are greedy sequences always the best solution?🤔

Greedy decoding for open-ended generation?

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation27
(Holtzman et al. ICLR 2020)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Pr
ob

ab
ili
ty

�i���t��

��a� ��ar�� ���t i� ���� ��r�ri�i��

��a� ��ar��
���a�

Greedy methods fail to capture the variance of human text distribution.

The probability assigned to tokens generated by Beam Search and humans, given the same context.

Lecture 3: Tokenization28

Sampling generation from LLMs

Time to get random: Sampling

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation29

• Sample a token from the token distribution at each step!

• It's inherently random so you can sample any token.

̂yt ∼ P(yt = w |{y}<t)

restroom
grocery

store
airport

bathroom
beach
doctor

hospital
pub
gym
his

He wanted

to go to the Model

Decoding: Top-k Sampling

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation30

• Problem: Vanilla sampling makes every token in the vocabulary an option
• Even if most of the probability mass in the distribution is over a limited set of options, the
tail of the distribution could be very long and in aggregate have considerable mass
(statistics speak: we have “heavy tailed” distributions)

• Many tokens are probably really wrong in the current context.
• Although each of them may be assigned a small probability, in aggregate they still get a
high chance to be selected.

• Solution: Top-k sampling (Fan et al., 2018)
• Only sample from the top k tokens in the probability distribution.

Decoding: Top-k Sampling

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation31

• Solution: Top-k sampling (Fan et al., 2018)
• Only sample from the top k tokens in the probability distribution.
• Common values for k = 10, 20, 50 (but it's up to you!)

• Increasing k yields more diverse, but risky outputs
• Decreasing k yields more safe but generic outputs

He wanted

to go to the Model

restroom
grocery

store
airport

bathroom
beach
doctor

hospital
pub
gym
his

Issues with Top-k Sampling

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation32

For flat distribution,
Top-k Sampling may cut off too quickly!

For peaked distribution,
Top-k Sampling may also cut off too slowly!

Decoding: Top-p (Nucleus) Sampling

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation33

• Problem: The token distributions we sample from are dynamic
• When the distribution is flat, small removes many viable options.
• When the distribution is peaked, large allows too many options a chance to be
selected.

• Solution: Top-p sampling (Holtzman et al., 2020)
• Sample from all tokens in the top cumulative probability mass (i.e., where mass is
concentrated)

• Varies according to the uniformity of

Pt k
Pt k

p

k Pt

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation34

• Solution: Top-p sampling (Holtzman et al., 2020)
• Sample from all tokens in the top cumulative probability mass (i.e., where mass is
concentrated)

• Varies according to the uniformity of

p

k Pt

p=0.2

Pt(yt = w |{y}<t) Pt(yt = w |{y}<t)

p=0.12 p=0.8

Pt(yt = w |{y}<t)

Decoding: Top-p (Nucleus) Sampling

Scaling randomness: Softmax temperature

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation35

• Recall: At time step t, model computes a distribution by applying softmax to a vector of
scores

•Here, you can apply temperature hyperparameter to the softmax to rebalance :

• Raise the temperature : becomes more uniform
• More diverse output (probability is spread across vocabulary)

• Lower the temperature : becomes more spiky
• Less diverse output (probability concentrated to the top tokens)

Pt
S ∈ ℝ|V|

τ Pt

τ > 1 Pt

τ < 1 Pt

Pt(yt = w |{y<t}) =
exp(Sw)

∑w′ ∈V exp(Sw′
)

Pt(yt = w |{y<t}) =
exp(Sw/τ)

∑w′ ∈V exp(Sw′
/τ)

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation36

• You can apply temperature hyperparameter to the softmax to rebalance :

• Raise the temperature : becomes more uniform
• More diverse output (probability is spread across vocabulary)

• Lower the temperature : becomes more spiky
• Less diverse output (probability concentrated to the top tokens)

τ Pt

τ > 1 Pt

τ < 1 Pt

Pt(yt = w |{y<t}) =
exp(Sw/τ)

∑w′ ∈V exp(Sw′
/τ)

Scaling randomness: Softmax temperature

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation37

• You can apply temperature hyperparameter to the softmax to rebalance :

• Raise the temperature : becomes more uniform
• More diverse output (probability is spread across vocabulary)

• Lower the temperature : becomes more spiky
• Less diverse output (probability concentrated to the top tokens)

τ Pt

τ > 1 Pt

τ < 1 Pt

Pt(yt = w |{y<t}) =
exp(Sw/τ)

∑w′ ∈V exp(Sw′
/τ)

NOTE: Temperature is a hyperparameter for decoding algorithm,
not an algorithm itself! It can be applied for both beam search and

sampling methods.

Scaling randomness: Softmax temperature

Decoding: Takeaways

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation38

• Decoding is still a challenging problem in NLG - there's a lot more work to be done!

• Different decoding algorithms can allow us to inject biases that encourage different
properties of coherent natural language generation

• Some of the most impactful advances in NLG of the last few years have come from
simple but effective modifications to decoding algorithms

Evaluating natural language generation

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation39

Types of text evaluation methods

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation40

Content Overlap Metrics Model-based Metrics Human Evaluation

Ref: They walked to the grocery store.

Gen: The woman went to the hardware store.

Content overlap metrics

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation41

• Compute a score that indicates the similarity between generated and gold-standard (often
human-written) text

• Fast and efficient; widely used (e.g. for MT and summarization)
• Dominant approach: N-gram overlap metrics

• e.g., BLEU, ROUGE, METEOR, CIDEr, etc.

 Ref: They walked to the grocery store.

Gen: The woman went to the hardware store.

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation42

• Dominant approach: N-gram overlap metrics
• e.g., BLEU, ROUGE, METEOR, CIDEr, etc.

• Not ideal even for less open-ended tasks - e.g., machine translation

• They get progressively much worse for more open-ended tasks
• Worse for summarization, as longer summaries are harder to measure
• Much worse for dialogue (in how many ways can you respond to your friend?)
• Much, much worse for story generation, which is also open-ended, but whose sequence
length can make it seem you're getting decent scores!

Content overlap metrics

A simple failure case

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation43

• N-gram overlap metrics have no concept of semantic relatedness!

Yes for sure!

Sure I do!

Yes!

No for sure...

Score:

0.61

0.25

0.0

0.61

False negative

False positive

Are you enjoying the
NLP class?

For sure!

Model-based metrics to capture more semantics

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation44

• Use learned representation of words and
sentences to compute semantic similarity
between generated and reference texts

• No more n-gram bottleneck: text units
are represented as embeddings!

• Even though embeddings are pre-
trained, distance metrics used to measure
similarity can be fixed.

Model-based metrics: Word distance functions

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation45

Vector Similarity
Embedding-based similarity for
semantic distance between text.

• Embedding Average (Liu et al., 2016)
• Vector Extrema (Liu et al., 2016)

• MEANT (Lo, 2017)

• YISI (Lo, 2019)

Word Mover's 
Distance
Measures the distance between
two sequences using word
embedding similarity matching.

• (Kusner et al., 2015; Zhao et al., 2019)

BERTSCORE
Uses pre-trained contextual embeddings from BERT
and matches words in candidate and reference
sentences by cosine similarity.

• (Zhang et al., 2019)

Model-based metrics: LLM as evaluator

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation46

• Directly prompt LLM (GPT-4) to evaluate generated
text.
• Can be customized with evaluation criteria
• (Often) better correlation with human evaluators
than task-specific metrics (e.g. ROUGE)

• (Often) is cheaper than human evaluation

• Limitations
• Brittleness: LLM evaluation can significantly vary
when given different prompts!

• Potential self-bias - LLMs may prefer what LLMs
have generated...

Liu et al. 2023

Hsu et al. EMNLP Findings, 2023

Human evaluations

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation47

• Automatic metrics fall short of matching human decisions

• Most important form of evaluation for text generation systems

• Gold standard in developing new automatic metrics
• Better automatic metrics will better correlate with human judgements!

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation48

• Sounds easy, but hard in practice: Ask humans to evaluate the quality of text

• Typical evaluation dimensions:
• fluency
• coherence / consistency
• factuality and correctness
• commonsense
• style / formality
• grammaticality
• typicality
• redundancy
• ...

Note: Don't compare human
evaluation scores across

different studies

Even if they claim to evaluate
on the same dimensions!

Human evaluations

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation49

• Human judgments are regarded as gold standard
• Of course, we know that human eval is slow and expensive
• Beyond its cost, human eval is still far from perfect:

• Human judgements
• are inconsistent / irreproducible
• can be illogical
• can be misinterpreting your questionnaire
• ...

• and recently, use of LLMs by crowd-source workers 🙄
(Veselovsky et al., 2023)

Human evaluations

Evaluation: Takeaways

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation50

• Content-overlap metrics provide a good starting point for evaluating the generation quality,
but they're not good enough on their own

• Model-based metrics can be more correlated with human judgment, but often are not
interpretable

• Human judgments are critical
• But humans are inconsistent!

• In many cases, the best judge of output quality is YOU!
• Look at the actual generations - don't just rely on numbers.
• Publicly release large samples of outputs from your system!

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation51

• Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference
• https://arena.lmsys.org

LLM evaluation: Chatbot Arena

https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

https://arena.lmsys.org

