## [Important] Updated details on course plan

After receiving feedback during today's lecture, we have made some updates to the course plan as follows.

1. Assignment 2

- The due date for Assignment 2 has been extended from March 19 to the end of March 22 (11:59 pm next Friday)
- Next Tuesday, we (mainly our TA) will conduct a coding tutorial on Transformers and \#assignment-2 If you face any difficulties in translating the concepts taught in class into code, please attend the physical class on March 19.
- Book TA's office hours: Thursday $9 \mathrm{am}-10: 15 \mathrm{am}$ (more info on the course page). If needed, the TA has kindly agreed to provide additional time slots this week.


## Notes from TA

- Soft grading: In our handouts, we provide the final accuracy and runtime of our implementations for your reference, which does not mean that if you don't reach that number, your grade will be zero. As we mentioned in our Slack channel, even if your code fails to execute, has a long runtime, or does not reach that number, we still carefully evaluate all solutions and accumulate grades for each correct step.
- Part 1 and Part 2 involve the implementation of a Transformer based on PyTorch. We strongly recommend that you read our course reading materials in depth, which include detailed code explanations. We will also introduce the code implementation of Transformer in the coming tutorial.
- Part 3 involves using GPU on Colab to implement the prompting method. During the coding process or just idling on the webpage, you may encounter time limits on Colab. Please remember to close the tab if not using Colab [detailed notification]. We also provide some tips for accelerating inference in the Slack channel.

2. Course project plan:

- Considering the feedback received regarding assignment 2 being too challenging for some students, we have decided to simplify the course project and redesign it as assignment 3. The original course project design was even more difficult compared to Assignment 2.
- The assignment 3 will consist of two parts (still $30 \%$ of your grade):
- 1) coding problems similar to assignment 2 (coding of the assignment 3 will be a bit easier)
- 2) written problems as a sample final exam (multiple-choice, blank-filling, short answer problems)

3. Final exam plan

- The final exam will include multiple-choice, blank-filling, short answer problems. Advanced contents covered in weeks 11-15 will only be tested in the multiple-choice and blank-filling problems.
- You can get an idea of what the final exam will look like. More details about the final exam will be provided later.

We hope that these updated details address most of your concerns about the course so far. We welcome additional anonymous feedback through the Google Survey.

# COMP 3361 Natural Language Processing 

Tutorial \#2: Transformer and Its Implementation

## Agenda

- Transformer and Its Implementation
- FAQ


## Reading Materials

- The Illustrated Transformer
- https://jalammar.github.io/illustrated-transformer/
- The Annotated Transformer
- https://nlp.seas.harvard.edu/2018/04/03/attention.html
- Attention Is All You Need
- https://arxiv.org/abs/1706.03762


## Multi-Head Self-Attention

## Multi-Head Self-Attention

- Let $\mathrm{E}=[$ sent len, embedding dim] be the input sentence. This will be passed through three different linear layers to produce three mats:
- Query $Q=E W^{Q}$ : each token "chooses" what to attend to
- Keys $K=E W^{K}$ : these control what each token looks like as a "target"
- Values $V=E W^{V}$ : these vectors get summed up to form the output

$$
\operatorname{Attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V
$$

## Self-Attention

Input

Embedding

Queries

Keys

Values


Machines

$W^{Q}$

$W^{K}$


WV

## nn.Embedding

## $\operatorname{Attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V$

```
class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(vocab, d_model)
        self.d_model = d_model
    def forward(self, x):
        return self.lut(x) * math.sqrt(self.d_model)
```


## Self-Attention


sent len $x$ sent len
(attn for each word to each other)

sent len $x$ hidden dim
Z is a weighted combination of V rows

## Self-Attention

```
def attention(query, key, value, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
    if mask is not None:
    scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = scores.softmax(dim=-1)
    if dropout is not None:
    p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn
```


## Attention Maps

- Example visualization of attention matrix A (from assignment)
- Each row: distribution over what that token attends to. E.g., the first "v" attends very heavily to itself (bright yellow box)
- Your task on the HW: assess if the attentions make sense



## Multi-Head Self-Attention

Just duplicate the whole computation with different weights:

ATTENTION HEAD \#O


## Multi-Head Self-Attention

1) This is our input sentence*
2) We embed each word*


Thinking
Machines

* In all encoders other than \#0, we don't need embedding.
We start directly with the output of the encoder right below this one

3) Split into 8 heads.

We multiply $X$ or
$R$ with weight matrices
4) Calculate attention using the resulting Q/K/V matrices
5) Concatenate the resulting $Z$ matrices, then multiply with weight matrix $W^{\circ}$ to produce the output of the layer

$W_{7}{ }^{\text {Q }}$


## Transformers

## Architecture

- Alternate multi-head self-attention with feedforward layers that operate over each word individually

$$
\operatorname{FFN}(x)=\max \left(0, x W_{1}+b_{1}\right) W_{2}+b_{2}
$$

- These feedforward layers are where most of the parameters are
- Residual connections in the model: input of a layer is added to its output
- Layer normalization: controls the scale of different layers in very deep networks (not needed in A2)



## Dimensions

- Vectors: $d_{\text {model }}$
- Queries/Keys: $d_{k}$, always smaller than $d_{\text {model }}$
- Values: separate dimension $d_{v}$, output is multiplied by $W^{O}$ which is $d_{v} \times d_{\text {model }}$ so we can get back to $d_{\text {model }}$ before the residual

$$
d_{v}->d_{\text {model }}
$$

- FFN can explode the dimension with $W_{1}$ and collapse it back with $W_{2}$
- $\quad \operatorname{FFN}(x)=\max \left(0, x W_{1}+b_{1}\right) W_{2}+b_{2}$



## FFN Layer

class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."

```
def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)
def forward(self, x):
        return self.w_2(self.dropout(self.w_1(x).relu()))
```


## Transformers: Position Sensitivity



- Transformers have no notion of position by default
- Encode each sequence position as an integer, add it to the word embedding vector


## Position Encoding

$$
\begin{gathered}
P E_{(p o s, 2 i)}=\sin \left(p o s / 10000^{2 i / d_{\text {model }}}\right) \\
P E_{(p o s, 2 i+1)}=\cos \left(p o s / 10000^{2 i / d_{\text {model }}}\right)
\end{gathered}
$$

- Where pos is the position and $\mathbf{i}$ is the dimension.


Embedding dim

- That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2 \pi$ to $10000 \cdot 2 \pi$


## Position Encoding

```
class PositionalEncoding(nn.Module):
    "Implement the PE function."
    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)
        )
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer("pe", pe)
    def forward(self, x):
        x = x + self.pe[:, : x.size(1)].requires_grad_(False)
        return self.dropout(x)
```


## Transformers: Complete Model

- Original Transformer paper presents an encoder-decoder model
- In this assignment we don't need to think about both of these parts.
- Can turn the encoder into a decoderonly model through use of a triangular causal attention mask (only allow attend on to previous tokens)



## class EncoderLayer(nn.Module)

"Encoder is made up of self-attn and feed forward (defined below)"
"Core encoder is a stack of N layers"
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)

```
def __init__(self, size, self_attn, feed_forward, dropout):
    super(EncoderLayer, self).__init__()
    self.self_attn = self_attn
    self.feed_forward = feed_forward
    self.sublayer = clones(SublayerConnection(size, dropout), 2)
    self.size = size
def forward(self, x, mask):
    "Follow Figure 1 (left) for connections."
    x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
    return self.sublayer[1](x, self.feed_forward)
```

class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn. Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
return x + self.dropout(sublayer(self.norm(x)))

## Transformer Language Modeling

## What do Transformers produce?



- Encoding of each word - can pass this to another layer to make a prediction (like predicting the next word for language modeling)
- Like RNNs, Transformers can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors


## Transformer Language Modeling



$$
\begin{aligned}
& P(w \mid \text { context })=\frac{\exp \left(\mathbf{w} \cdot \mathbf{h}_{\mathbf{i}}\right)}{\sum_{w^{\prime}} \exp \left(\mathbf{w}^{\prime} \cdot \mathbf{h}_{\mathbf{i}}\right)} \\
& \text { equivalent to } \\
& P(w \mid \text { context })=\operatorname{softmax}\left(W \mathbf{h}_{i}\right)
\end{aligned}
$$

- $W$ is a (vocab size) $x$ (hidden size) matrix; nn. Linear in PyTorch (rows are word embeddings)


## Training Transformer LMs



- Input is a sequence of words, output is those words shifted by one,
- Allows us to train on predictions across several timesteps simultaneously (similar to batching but this is NOT what we refer to as batching)


## Training Transformer LMs



```
loss_fcn = nn.NLLLoss()
loss += loss_fcn(log_probs, ex.output_tensor)
[seq len, num classes] [seq len]
```

- Batching is a little tricky with NLLLoss: need to collate [batch, seq len, num classes] to [batch * seq len, num classes]. You do not need to batch


## Batched LM Training

I saw the dog running the park and it looked very excited to be there


## A Small Problem with Transformer LMs

- This Transformer LM as we've described it will easily achieve perfect accuracy. Why?

- With standard self-attention: "I" attends to "saw" and the model is "cheating". How do we ensure that this doesn't happen?


## Attention Masking

- We want to prohibit

Key words


- We want to mask out everything in red (an upper triangular matrix)


## Implementing in PyTorch

- nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, can accept an input and a mask for language modeling:
\# Inside the module; need to fill in size parameters layers = nn.TransformerEncoderLayer([...])
transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...]) [...]
\# Inside forward(): puts negative infinities in the red part mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1) output = transformer_encoder(input, mask=mask)
- You cannot use these for Part 1, only for Part 2

Assignment 2

## Assignment 2

- Part 1: Building a "Transformer" Encoder
- Part 2: Transformer for Language Modeling
- Part 3: Applying Large Language Models to Code Generation and Math Reasoning


## FAQ: Part 1

- Q: How to turn the text into embedding?
- A: use nn.Embedding
- Q: are we allowed to create new classes and functions?
- A: Yes, just make sure your train_Im is compatible with the original one.
- Q: Time limitations of autograder?
- A: Yes we collect these data. Even if your code fails to execute, has a long runtime, or does not reach that number, we still carefully evaluate all solutions and accumulate grades for each correct step.
- Q: what is d_internal? Shouldn't it be equal to d_model?
- A: Please refer to previous the Architecture slides.


## FAQ: Part 2

- Q: Should we implement encoder-decoder architecture?
- A: No, please use the nn.TransformerEncoder with casual mask.
- Q: Batching
- A: make sure you create the nn.TransformerEncoderLayer with batch_first=True.


## FAQ: Part 3

- Q: Google CoLab may have time limits.
- A: please save and close the webpage to prevent reaching the limit.
- Q: Out of memory
- A: Check if you have correct transformers==4.27.2; use flash-attn;

