
[Important] Updated details on course plan
After receiving feedback during today’s lecture, we have made some updates to the course plan as follows.

1. Assignment 2
• The due date for Assignment 2 has been extended from March 19 to the end of March 22 (11:59 pm next Friday).
• Next Tuesday, we (mainly our TA) will conduct a coding tutorial on Transformers and #assignment-2 If you face any difficulties in translating the concepts taught in class into 

code, please attend the physical class on March 19.
• Book TA’s office hours: Thursday 9 am - 10:15 am (more info on the course page). If needed, the TA has kindly agreed to provide additional time slots this week.

     Notes from TA
• Soft grading: In our handouts, we provide the final accuracy and runtime of our implementations for your reference, which does not mean that if you don’t reach that number, 

your grade will be zero. As we mentioned in our Slack channel, even if your code fails to execute, has a long runtime, or does not reach that number, we still carefully 
evaluate all solutions and accumulate grades for each correct step.

• Part 1 and Part 2 involve the implementation of a Transformer based on PyTorch. We strongly recommend that you read our course reading materials in depth, which include 
detailed code explanations. We will also introduce the code implementation of Transformer in the coming tutorial.

• Part 3 involves using GPU on Colab to implement the prompting method. During the coding process or just idling on the webpage, you may encounter time limits on Colab. 
Please remember to close the tab if not using Colab [detailed notification]. We also provide some tips for accelerating inference in the Slack channel.

2. Course project plan:
• Considering the feedback received regarding assignment 2 being too challenging for some students, we have decided to simplify the course project and redesign it as 

assignment 3. The original course project design was even more difficult compared to Assignment 2.
• The assignment 3 will consist of two parts (still 30% of your grade):
• 1) coding problems similar to assignment 2 (coding of the assignment 3 will be a bit easier)
• 2) written problems as a sample final exam (multiple-choice, blank-filling, short answer problems)

3. Final exam plan
• The final exam will include multiple-choice, blank-filling, short answer problems. Advanced contents covered in weeks 11-15 will only be tested in the  multiple-choice and 

blank-filling problems.
• You can get an idea of what the final exam will look like. More details about the final exam will be provided later.

We hope that these updated details address most of your concerns about the course so far. We welcome additional anonymous feedback through the Google Survey.

https://comp3361-spring2024.slack.com/archives/C06KAGU2ZT9
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://comp3361-spring2024.slack.com/archives/C06KAGU2ZT9/p1708606062877309
https://comp3361-spring2024.slack.com/archives/C06KAGU2ZT9/p1708606062877309
https://forms.gle/R56xczjqQKvyWd8X7


COMP 3361 Natural Language Processing
Tutorial #2: Transformer and Its Implementation



Agenda

• Transformer and Its Implementation


• FAQ



Reading Materials
• The Illustrated Transformer 

• https://jalammar.github.io/illustrated-transformer/


• The Annotated Transformer 

• https://nlp.seas.harvard.edu/2018/04/03/attention.html


• Attention Is All You Need 

• https://arxiv.org/abs/1706.03762

https://jalammar.github.io/illustrated-transformer/
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://arxiv.org/abs/1706.03762


Multi-Head Self-Attention



Multi-Head Self-Attention
• Let E = [sent len, embedding dim] be the input sentence. This will be 

passed through three different linear layers to produce three mats:


• Query : each token “chooses” what to attend to


• Keys : these control what each token looks like as a “target”


• Values : these vectors get summed up to form the output

Q = EWQ

K = EWK

V = EWV



Self-Attention



nn.Embedding



Self-Attention
sent len x sent len 

(attn for each word to each other)

sent len x hidden dim 
Z is a weighted combination of V rows



Self-Attention



Attention Maps

• Example visualization of attention 
matrix A (from assignment)


• Each row: distribution over what that 
token attends to. E.g., the first “v” 
attends very heavily to itself (bright 
yellow box)


• Your task on the HW: assess if the 
attentions make sense



Multi-Head Self-Attention
Just duplicate the whole 
computation with different 
weights:



Multi-Head Self-Attention



Transformers



Architecture
• Alternate multi-head self-attention with feedforward 

layers that operate over each word individually


• These feedforward layers are where most of the 
parameters are


• Residual connections in the model: input of a layer 
is added to its output


• Layer normalization: controls the scale of different 
layers in very deep networks (not needed in A2)



Dimensions
• Vectors: 


• Queries/Keys: , always smaller than 


• Values: separate dimension , output is multiplied by 
 which is  x  so we can get back to   

before the residual


• FFN can explode the dimension with  and collapse 
it back with  


•
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FFN Layer



Transformers: Position Sensitivity

• Transformers have no notion of position by default


• Encode each sequence position as an integer, add it to the word 
embedding vector



Position Encoding

• Where pos is the position and i is the dimension. 


• That is, each dimension of the positional encoding corresponds to a 
sinusoid. The wavelengths form a geometric progression from  to 2π
10000 ⋅ 2π

Words

Embedding dim



Position Encoding



Transformers: Complete Model

• Original Transformer paper presents an 
encoder-decoder model


• In this assignment we don’t need to 
think about both of these parts.


• Can turn the encoder into a decoder-
only model through use of a triangular 
causal attention mask (only allow attend 
on to previous tokens)





Transformer Language Modeling



What do Transformers produce?

• Encoding of each word — can pass this to another layer to make a 
prediction (like predicting the next word for language modeling)


•  Like RNNs, Transformers can be viewed as a transformation of a 
sequence of vectors into a sequence of context-dependent vectors

   the   movie    was    great



Transformer Language Modeling

• W is a (vocab size) x (hidden size) matrix; nn.Linear in PyTorch (rows are 
word embeddings)



Training Transformer LMs

• Input is a sequence of words, output is those words shifted by one, 


• Allows us to train on predictions across several timesteps simultaneously 
(similar to batching but this is NOT what we refer to as batching)



Training Transformer LMs

• Batching is a little tricky with NLLLoss: need to collate [batch, seq len, 
num classes] to [batch * seq len, num classes]. You do not need to batch

loss_fcn = nn.NLLLoss() 
loss += loss_fcn(log_probs, ex.output_tensor)

[seq len, num output classes] [seq len]

[seq len, num classes]         [seq len]



Batched LM Training



A Small Problem with Transformer LMs
• This Transformer LM as we’ve described it will easily achieve perfect 

accuracy. Why?


• With standard self-attention: “I” attends to “saw” and the model is 
“cheating”. How do we ensure that this doesn’t happen?



Attention Masking
• We want to prohibit


• We want to mask out everything in red (an upper triangular matrix)

Key words

Query words



Implementing in PyTorch
• nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, 

can accept an input and a mask for language modeling:


• You cannot use these for Part 1, only for Part 2

# Inside the module; need to fill in size parameters 
layers = nn.TransformerEncoderLayer([…]) 
transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[…])  
[…] 
# Inside forward(): puts negative infinities in the red part 
mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1) 
output = transformer_encoder(input, mask=mask)



Assignment 2



Assignment 2

• Part 1: Building a “Transformer” Encoder


• Part 2: Transformer for Language Modeling


• Part 3: Applying Large Language Models to Code Generation and Math 
Reasoning



FAQ: Part 1
• Q: How to turn the text into embedding?


• A: use nn.Embedding


• Q: are we allowed to create new classes and functions?


• A: Yes, just make sure your train_lm is compatible with the original one.


• Q: Time limitations of autograder?


• A: Yes we collect these data. Even if your code fails to execute, has a long runtime, or does not 
reach that number, we still carefully evaluate all solutions and accumulate grades for each correct 
step.


• Q: what is d_internal? Shouldn’t it be equal to d_model?


• A: Please refer to previous the Architecture slides.



FAQ: Part 2

• Q: Should we implement encoder-decoder architecture?


• A: No, please use the nn.TransformerEncoder with casual mask.


• Q: Batching


• A: make sure you create the nn.TransformerEncoderLayer with 
batch_first=True.



FAQ: Part 3

• Q: Google CoLab may have time limits.


• A: please save and close the webpage to prevent reaching the limit.


• Q: Out of memory


• A: Check if you have correct transformers==4.27.2; use flash-attn;


