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• Multimodal AI: System that integrates various data types and sensory 
inputs (images, videos, audio, other sensory information) to create a 
unified representation or understanding. 

• This lecture: will focus on image & text only.

MultiModal Systems
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Examples of Multimodal Tasks
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Multimodal Language Models
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How to train these models?



Multimodal Learning (for Image & Text)
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A person throwing  
a frisbee.

A person throwing  
a frisbee.

What is the object 
being thrown?

Note: For simplicity, we will cover image and text as the two modalities.
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Image & Text Alignment Text to Image GenerationImage + Text Understanding



Steps of Image-Text Alignment
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• Step1: Encode different 
modalities into shared 
embeddings.  

• Step2: Bring modalities that 
encode same meaning into 
the same space. 



Vision Encoder: Convolutional Neural Networks
• CNNs: Extract features that encode spatial and temporal relationships in image with 

convolution operations. 

• Pooling: Reduce dimensionality of the convoluted features for efficient computation 

• De facto model for Image Classification 
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• Tokenize images as sequence of “patches” 
of fixed size (e.g. 16 x16 px) 

• Resize images to same size to ensure same 
number of patches in training. 

• Image Size 224*224px = 14*14 patches 

• Use the same transformer encoder 
architecture in NLP 

• Add [CLS] token for classification tasks. 

• Add positional embedding to be aware of 
location of patches.  

• Less image-specific inductive bias than 
CNNs that encodes translation equivariance 
and locality.

Vision Transformer (ViT): Image Encoding via Patch Tokens
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Task: Image Classification



Steps of Image-Text Alignment
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• Step1: Encode different 
modalities into shared 
embeddings.  

• Step2: Bring modalities that 
encode same meaning into 
the same space. 

Fusion

Word2Vec, BERT, …

xv

xt



Step2: Learning to Align Embeddings
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Contrastive Learning
• Contrastive Learning: learn the shared embedding by contrasting positive and 

negative pairs of instances 

• Positives: matched image-text pairs 

• Negatives: image-text from mismatched instances  

• Idea: Positive instances should be closer together in a learned embedding space, while 
Negatives should be farther apart.
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A cup sitting next to a laptop.
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Contrastive Learning
• Adjust similarity of learned embeddings with a distance metric. 

• Euclidean Distance 

• Cosine Similarity 

• sim(     , z_t) >> sim(z_v, z_t )  
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Contrastive Learning
• Adjust similarity of learned embeddings with a distance metric. 

• Euclidean Distance 

• Cosine Similarity 

• sim(     , z_t) >> sim(z_v, z_t )   +  sim(     , z_t) >> sim(z_v, z_t ) 
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• Adjust similarity of learned embeddings with a distance metric. 

• Euclidean Distance 

• Cosine Similarity 

• sim(     , z_t) >> sim(z_v, z_t )   +  sim(     , z_t) >> sim(z_v, z_t ) 

Contrastive Learning

Multimodality14

A person throwing a frisbee

zv zvz+
t z+

− z+
v zt z−

v zt

max(0,sim(zv, z+
t ) − sim(zv, z+

−) + m)+

max(0,sim(z+
v , zt) − sim(z−

v , zt) + m)
Triplet 

Loss

margin parameter: min 
distance b.w. positive 

and negatives

zt
z+

v
z−

v

https://www.v7labs.com/blog/triplet-loss#:~:text=Triplet%20loss%20is%20a%20way,a%20dissimilar%20item%20(negative).



A Different View of Contrastive Learning
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• What does this look like? 

• Classification over distance embedding!



CLIP: Contrastive Language-Image Pre-Training 
(OpenAI, 2021)
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Aligned 
Image, Text  

Pairs

Minimize  
InfoNCE Loss

Objective: given a batch of N (image, text) pairs,  
predict which of the N × N possible (image, text) 
pairings across a batch actually occurred.

Use the [CLS] token  
for transformers



CLIP: Contrastive Language-Image Pre-Training
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Select the best 
text prompt that gives the 

highest similarity.

N-Classes Prediction

Create Prompt to 
Class Labels 

for more context

Enables Open Vocabulary 
Classification class labels.



Image-Text Training Dataset
• Previous Image-Text Pre-Training Dataset 

• Leverage filtered, carefully annotated dataset for academic research  

• 10M was considered as “large-scale” pre-training
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Image-Text Training Dataset
• Previous Image-Text Pre-Training Dataset 

• Leverage filtered, carefully annotated dataset for academic research  

• 10M was considered as “large-scale” pre-training 

• CLIP: 400M Image-Text pairs crawled from web 

• Unfiltered, highly varied, and highly noisy data 

• Covers much more diverse concepts and images
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Text Supervision Enables Strong Zero-Shot Performance 
in Vision Tasks

• Large-Scale Training on Noisy Image-
Text Data -> Great Zero-Shot 
Performance 

• Zero-Shot CLIP is competitive with 
fully supervised Resnet50 in Image 
Classification 

• Linear Probe: Train linear layer on 
top of fixed, pre-trained 
embeddings.
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Zero-Shot CLIP

Outperforms


Supervised baseline.

Supervised baseline

Outperforms CLIP.



Why is CLIP so good?
• Learning visual representation with 

language supervision: learns visual 
concepts much more efficiently. 

• Exploited Scalability benefits: 

• 256 GPUS + 4096 batch size with 2 
weeks of training 

• Large batch size in Contrastive Learning 

• More negatives to compare against. 

• More challenging task to distinguish 
the negatives, requiring fine-grained 
visual recognition.
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Understanding Multimodal Capabilites of CLIP
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•Aligns images to semantic 
concepts thanks to language 
supervision, rather than just 
aligning texture and shapes. 

•Case where multimodal learning 
was a big breakthrough for 
learning high-quality, unimodal 
representations (image)



Vision and Language Systems
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A person throwing  
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A person throwing  
a frisbee.

What is the object 
being thrown?

Note: For simplicity, we will cover image and text as the two modalities.
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CLIP for Visual Reasoning?
• Supports retrieval but not capable of generation 

• VQA Prompt: “question: [question text] answer: [answer text]” 

• Note: CLIP is trained to align images with alt-text captions 

• Not suitable for reasoning tasks such as question answering.
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Near Chance Performance



Image and Text Understanding
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Embedding vs Fusion Trade Offs 
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Cosine Distance

CLIP

Perhaps, need 
stronger fusion  

mechanism  
for complex 

reasoning tasksEnough for 
image-text 
matching



Vision and Language Fusion
• Is there a good model that can efficiently encode interactions among 

the sequence? 

• Hint: What models have been covered in this class?
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Fusion Model?

xt xv



Image-to-Text Generative Models
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A woman throwing a frisbee

Vision Model Language ModelAligning Model

Image Encoder — Trainable/Frozen 
Language Encoder/Decoder — Trainable/Frozen 
Connecting/Aligning Modules — Trainable



Frozen: Multimodal Few-Shot Learning with Frozen 
Language Models (Deepmind 2021)

• Image Captioning: describe an image using a sentence.
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Microsoft COCO, 2014 



Frozen: Prefix Tuning of Image Embeddings 
(Deepmind, 2021)
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Flamingo: a Visual Language Model for Few-Shot 
Learning (Deepmind, 2022)
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Flamingo: a Visual Language Model for Few-Shot 
Learning (Deepmind, 2022)
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• Strong zero/few-shot performance



Trends of VL Models
• Race of Scaling Model Size / Dataset / # of Tasks?
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Side note: Language as a common interface?
• Image captioning is all we need?

Multimodality34

[PromptCap: Prompt-Guided Image Captioning for VQA with GPT-3. ICCV 2023] 
[An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA. AAAI 2022] 



Multimodality
Instruction tuning,  
In-context Learning,  
T2I Generation



Gaps in Multimodal LMs
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Scaled LLM

ICL 
CoT
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Instruction Following

ICL 
CoT 

Instruction Following 
Multimodal - Vision



Gaps in Multimodal LMs
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BLIP 
Flamingo Multimodal GPT-4

Scaled LLM

ICL 
CoT

ICL 
CoT 

Instruction Following

ICL 
CoT 

Instruction Following 
Multimodal - Vision

What? Alignment 
How? Instruction



Instruction Tuning in LLMs
• Easily 0-shot generalizable (previously hard to generalize) 

• Task instructions are given explicitly (previously implicit) 

• Multi-tasking with specific instructions (previously objectives) 

• Easy to mix tasks with instructions
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Input OutputInstruction



How about MM Instruction-tuning?

• Data? 

• Model? 

• Improvements? 

• Open Questions?
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Self-Instruct — strong (V)LM teachers 
• LLM Teachers: 

• GPT 3.5 

• ShareGPT 

• Resulting IF models
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• Challenge for VLMs: 

• VLM Teachers? 

• Can we use LLM teachers?

Use text-only teachers to bootstrap



Data for Visual Instruction-tuning
• Symbolic representations of images from GPT4 

• Captions 

• Bounding boxes 

• GPT-assisted self-instruct tuning example generation
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Data for Visual Instruction-tuning
• 3 types of instruction-following questions and responses (text-only with symbolic repr.) 

•  Conversation (sequential QA pairs) 

• Detailed Description 

• Complex Reasoning (very important)
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Data for Visual Instruction-tuning
• 3 types of instruction-following questions and responses (text-only with symbolic repr.) 

•  Conversation (sequential QA pairs) 

• Detailed Description 

• Complex Reasoning (very important)
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• Use COCO images and captions 
• GPT-4 Language only model to prompt 
• Few-shot prompting with manual examples 

• 158k instruction following samples 
• 58k conversations 
• 23k detailed descriptions 
• 77k complex reasoning



LLaVA: Large Lang and Vis Assistant
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LLAMA 

CLIP VE 
VIT-L/14 



Dual stage training
• Stage 1: Pre-training for feature alignment 

• Only projection matrix is updated 

• Trained on a subset of CC3M (595k IT pairs) 

• Stage 2: Fine-tuning for user and task orientation 

• Both projection matrix and LLM are updated 

• Tuned on Visual chat (user chat-like orientation 158k) & Science 
QA (complex science reasoning)
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LLaVA demos
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Open Questions
• Human preference in Alignment 

• Retrieval Augmentation for In-Context Learning
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Map of other topics

• Credit: VLP Tutorial @CVPR’23
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More Modalities (Beyond VL)

Multimodality49

Speech-GPT

Panda-GPT

X-LLM



Evaluations
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Applications to Domains/Tasks

mmmu-benchmark.github.io/
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Medical: 
Med-LLaVA 
PMC-VQA 

Domains - pathology, geometry, art and design 
Image types - diagrams, tables, plots, chemical 
structures 
Expert skill - Mathematical equations, science formula 



BLINK: Multimodal LLMs Can See but Not Perceive

• 14 tasks that humans can solve 
“within a blink”, but extremely 
challenging for multimodal LLMs 

• Even the best multimodal LLMs 
lacks visual perception ability 

  Human: 96% 
  GPT4V: 51% 
  Gemini Pro: 45% 
  Claude OPUS: 43% 
  Random guess: 38%
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A fast developing field
• Big gaps remain 

1. Visual Perception Gaps 
2. Multiple Images 
3. 3D 
4. Video reasoning 
5. Encoding high resolution images 
6. Encoding long sequences 
7. Multimodal hallucinations 

…
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Q & A
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Thank you for listening!
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