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Write a short poem about 
the transformer neural 
network architecture.

In the digital depths, where 
data streams flow, 
Lies a structure wrought with 
a silent glow. 
Woven of weights and layers 
so deep, 
Where the echoes of bits and 
bytes do creep. 
….

Human rater: it appears to be good. 10/10

GPT-3: do whatever to increase human rating. 



Misalignment: Building an AI Research Agent



Misalignment: Building an AI Research Agent

(shallow) What appears to be good

Asking reviewers to rate the AI-written papers



Misalignment: Building an AI Research Agent

(shallow) What appears to be good

Asking reviewers to rate the AI-written papers

- Polish the plots more fancy;  
- Adding mathematical proofs that does not add value; 
- Cite papers written by the reviewers and praise them highly; 
- Overclaim 
- Cherrypick hyperparameters and do not report them …



Misalignment: Building an AI Research Agent

(shallow) What appears to be good (sophisticated) what’s actually goodmisaligned with

Asking reviewers to rate the AI-written papers

- Polish the plots more fancy;  
- Adding mathematical proofs that does not add value; 
- Cite papers written by the reviewers and praise them highly; 
- Overclaim 
- Cherrypick hyperparameters and do not report them …



Misalignment: Building an AI Research Agent

(shallow) What appears to be good (sophisticated) what’s actually goodmisaligned with

Asking reviewers to rate the AI-written papers

- Polish the plots more fancy;  
- Adding mathematical proofs that does not add value; 
- Cite papers written by the reviewers and praise them highly; 
- Overclaim 
- Cherrypick hyperparameters and do not report them …

Deep evaluation of 
research quality: e.g. 
code review, human 
study, reproduce in 
another setup ….
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Concrete Examples of Misalignment

‣ Recommender System (e.g. 抖⾳/⼩红书)： User Engagement vs. User Happiness

‣ LLM：Confidently wrong to achieve higher rating vs. Truthful and mention uncertainties

‣ LLM: Agree with users’ political views to make them happy vs. Being impartial

‣ Goodhardts’ Law is everywhere:

‣ Tests to evaluate student performance

‣ Citation counts to evaluate research capability

‣ Intra-team communication to evaluate impact

Be careful whenever you are optimizing anything!!!!
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Scope of Today’s Presentation

What humans think is correct Whether it is ACTUALLY correctmisaligned with

Humans are fallible: 
- Maybe they don’t have enough expertise. 
- Maybe they don’t have enough time. 
- Maybe they are biased. 
- Maybe they are not smart enough to 

understand the problem 
- …

Scalable Oversight:  
- Helping humans oversee whether AI system is doing the correct thing. 
- Scalable: w.r.t. the difficulty of the task.
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2010, AlexNet 2024, Sora 2050, Superintelligence?

- Still stumble on simple 
object classification 

- Cannot reliably classify 
sentiment 

- Video modeling 
- Few-shot learning 
- Super-human game playing 
- Better-than-turkers reading comprehension 
- Coding 
- Agent 
…… 

- Run a company? 
- Automate AI research? 
- Develop quantum computers? 
- Control nuclear fusion? 
- Cure cancer? 
…… 

We are not yet prepared 
to oversee AI systems to 
do theses tasks
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Recap

‣ Misalignment:

‣ What we actually want is hard to evaluate & optimize

‣ We optimize against proxies (e.g. imperfect human judgement)

‣ Misalignment the gap between them

‣ Misalignment risk increases as model become stronger in the future

‣ Scalable Oversight: assisting human evaluators to evaluate stronger AI 
systems
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‣ The language model critique its own answer to assist human evaluators.

‣ Example task: machine summarization.

‣ Long article —> summary

‣ Human evaluator might miss some important details.
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Method - Debate

‣ Is it feasible to cure cancer with XXX medicine?

‣ Super intelligence might be capable of answer this question, but it might 
tell us the true answer.

‣ Debate:

‣ Each AI debater holds a position on a question.

‣ Human Judge decide by looking at the transcript.
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Method - Debate

“Where should I go on vacation, Alaska or Bali?” 

AI Alice: Alaska

AI Alice: Bali is out since your 
passport won’t arrive in time. 

AI Alice: Wait, no...Hawaii!

AI Bob: Bali

AI Bob: Expedited passport service 
only takes two weeks.

Human Judge: Alice loses bc she cannot continue the counterargument
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Method - Decomposition

‣ Decompose a complex tasks into more manageable sub pieces.

‣ For example: summarizing an entire book?

‣ Book summaries might be too hard to directly evaluate 

‣ (books are long)

‣ Break down into chapters 

‣ then into paragraphs. 

‣ recursively summarize



Outline

‣ Motivation for AI Alignment and Scalable Oversight 

‣ Method (high-level): 

‣ Debate 

‣ Self-critique 

‣ Decomposition 

‣ “Sandwiching” evaluation 

‣ Supervising Code Generation Models with Non-Programmers: Non-
programmers can label Text-to-SQL program
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How to Do Scalable Oversight Research?

‣ Scalable oversight: help humans know the correct answers.

‣ How do we know whether humans know the correct answers better, if we do 
not yet know the answer?
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Sandwiching evaluation

Alignment: how much is the model is optimized to produce correct answers 
Capability: how “smart” the model is. e.g. param count 

Low alignment High capability: non-instruction tuned GPT-3 
High alignment low capability: fine-tuned BERT.
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Sandwiching evaluation

Capability: 
- More time 
- More knowledgeable 
- More resources (e.g. can use 

computers) 
- More people do discuss with 
- ……
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Sandwiching evaluation recap

‣ Scalable oversight: help humans know the correct answers.

‣ Evaluation of a method:

‣ Expert > AI > non-expert

‣ Does our method help non-expert to use AI, s.t. they outperforms AI or 
non-experts, under the expert label

‣ (AI + non-expert) > non-expert, (AI + non-expert) > AI; eval based on 
expert label
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‣ Motivation for AI Alignment and Scalable Oversight 

‣ Method (high-level): 

‣ Debate 

‣ Self-critique 

‣ Decomposition 

‣ “Sandwiching” evaluation 

‣ Supervising Code Generation Models with Non-Programmers: Non-
programmers can label Text-to-SQL program
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Semantic Parsing

Natural Language How old is the youngest person from department A? 

SELECT MIN(Age) from People 
WHERE Department = ‘A’SQL Program Expensive!!

How can non-programmers supervise models to write SQL?
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Propose

SELECT MAX(Age) from People 

SELECT MIN(Age) from People 
WHERE Department = ‘A’

SELECT MAX(Name) from People 

TODO: How do non-
experts verify which 
candidate is correct?

……

7/10

1/10

1/80

Natural Language How old is the youngest person from department A? 

Candidates
Probabilities SQL

Propose with LLM x 32



Hard to Verify

SELECT t1.fname FROM student AS t1 JOIN has_pet AS t2 ON t1.stuid = t2.stuid
JOIN pets AS t3 ON t3.petid = t2.petid WHERE t3.pettype = 'cat' INTERSECT
  SELECT t1.fname FROM student AS t1 JOIN has_pet AS t2 ON t1.stuid = t2.stuid
  JOIN pets AS t3 ON t3.petid = t2.petid WHERE t3.pettype = 'dog'

SELECT fname FROM Student WHERE StuID IN
  (SELECT T1.stuid FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid = T2.stuid
   JOIN pets AS T3 ON T3.petid = T2.petid
   WHERE T3.pettype = 'cat' INTERSECT
     SELECT T1.stuid FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid = T2.stuid
     JOIN pets AS T3 ON T3.petid = T2.petid WHERE T3.pettype = ‘dog')

Find the first name of students who have both cat and dog pets.

Candidate 1

Candidate 2



Reduce

Difficult to directly verify 
that a program is correct.

Easier to verify that a program has the 
right behavior on example test cases.

Reduce
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Where does this database come from?

How old is the youngest 
person from department A? 

NAME Age Department
Alice 26 A
Bob 23 A

Cathy 28 B

23

Cathy

28

23

SELECT MAX(Age) from People 

SELECT MIN(Age) from People 
WHERE Department = ‘A’

SELECT MAX(Name) from People 

Non-expert’s Answer

Program’s Output



Make Verification Efficient

Maximize the bits of supervision with minimal human efforts.

Size ( ) is small

NAME Age Department
Alice 26 A
Bob 23 A

Cathy 28 B

InfoGain ( ) is large

NAME Age Department
Alice 26 A
Bob 23 A

Cathy 28 B



Make Verification Efficient

NAME Age Department
Collin 26 A
Bob 23 A

Cathy 28 B
David 19 A
Eric 11 A
Jacob 12 A
Alice 34 A
Dan 98 A

Alice 12 C
Kevin 38 B
Kevin 20 A

?????
Annotators’  

Answer

[In total 1000 rows, rest omitted]

How old is the youngest person from department A? 

The database input 
must be simple to 
comprehend



Make Verification Efficient

NAME Age Department
Collin 26 A
Bob 23 A

Cathy 28 B
David 19 A
Eric 11 A
Jacob 12 A
Alice 34 A
Dan 98 A

Alice 12 C
Kevin 38 B
Kevin 20 A

[In total 1000 rows, rest omitted]

Size ( ) = 1000
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NAME Age Department
Collin 26 A
Bob 23 A

SELECT MIN(Age) from People 

SELECT MIN(Age) from People 
WHERE Department = ‘A’

How old is the youngest person from department A? 



Make Verification Efficient

NAME Age Department
Collin 26 A
Bob 23 A

23
Annotators’  

Answer

23

23

SELECT MIN(Age) from People 

SELECT MIN(Age) from People 
WHERE Department = ‘A’

Not Informative!

How old is the youngest person from department A? 
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Expected Information Gain

NAME Age Department
Collin 26 A
Bob 23 A

InfoGain ( ) = 0.92 bit

Answer Entropy: -2/3 * log(2/3) - 1/3 * log(1/3) = 0.92

23

23

SELECT MIN(Age) from People 

SELECT MIN(Age) from People 
WHERE Department = ‘A’

1/3

1/3

1/3
SELECT MAX(Age) from People 

WHERE Department = ‘A’ 26

Probabilities SQL



Technical Details in Our Paper

! Optimize a database’s InfoGain under size constraint 

! Fuzzing to generate large databases with large InfoGain 

! dropping rows greedily to decrease size 

! Multi-round interaction
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Recipe: Propose & Reduce

! Method: 
! Propose SQL programs with Codex  

! Reduce verification to examine answers on databases 

! Make verification more efficient by making databases small and informative

! “Victory condition”: after reduced verification > propose w/o verification
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How old is the youngest person from department A? 

Natural Language

SELECT MAX(Age) from People 

SELECT MIN(Age) from People 
WHERE Department = ‘A’

SELECT MAX(Name) from People 

……

7/10

1/10

1/80

NAME Age Department
Alice 26 A
Bob 23 A

Cathy 28 B

Codex top-1

Non-expert annotation 
(non-CS, 0 SQL experience)

SELECT MIN(Age) from People 
WHERE Department = ‘A’

Probabilities

Propose 
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Dataset and Baselines

Prior expert annotations

How old is the youngest person from department A? 

Natural Language

SELECT MAX(Age) from People 

SELECT MIN(Age) from People 
WHERE Department = ‘A’

SELECT MAX(Name) from People 

……

7/10

1/10

1/80

NAME Age Department
Alice 26 A
Bob 23 A

Cathy 28 B

Codex top-1

Non-expert annotation 
(non-CS, 0 SQL experience)

SELECT MIN(Age) from People 
WHERE Department = ‘A’

Probabilities

Gold standard:  
(1) our authors using our system + 
(2) checking the SQL directly + 
(3) comparing with previous annotations +  
(4) discussing with previous annotators

Propose 
with Codex
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An Effective Database Simplifies Verification

Find the first name of students who have both cat and dog pets.

StuId First Name Last Name PetType PetId
Student_A Alex Pan Cat Pet_1
Student_B Alex Wei Dog Pet_2

Ownership 
(merged) 
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Recap

‣ Scalable Oversight: assisting humans to evaluate AI systems

‣ Example Method: debate, self-critique, decomposition, etc

‣ Sandwiching evaluation paradigm

‣ Text-to-SQL Example
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‣ Tractable (possible to make progress) 

‣ I have outline a few methods that were effective.

‣ Important (high impact if done properly)
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Scalable Oversight is Important

‣ AI capability is increasingly capable and doing complex tasks

‣ A lot of surprises from the past 10 years;  

‣ Probably more in the coming decade.

‣ Great if we can control powerful AI systems well 

‣ Catastrophic if we cannot

‣ Analogy: Nuclear fusion is easy, controlling is non-trivial



Thanks! 


