Efficient Training, Adaptation
and Models

Bailin Wang

bailinw@mit.edu

Slides adapted from Tri Dao’s lecture

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture18-deployment-and-efficiency.pdf

Machine Learning Has Made Exciting Progress

Fix Bugs

(ChatGPT/GPT4 - OpenAl)

Find the b ith this code:
E ind the bug wi is code:

for (vari=0;i<5;i++) {
setTimeout(() => console.log(i), 1000)
}

The code contains a bug that will cause it to always print the number 5 to the console,
rather than the expected sequence of numbers from 0 to 4. This is because the
“setTimeout™ function creates a closure that captures the value of the i variable, but
the “1i* variable is changed before the callback function is executed.

To fix this bug, the code can be modified to create a new variable in the loop that is
passed to the “setTimeout" callback function, rather than using the loop variable directly.

This will ensure that each callback function captures the correct value of the loop variable,

and the expected output will be produced. Here is an example of how the code could be
fixed:

(value),)

Generate Art
(Stable Diffusion — Stability.Al)

Design Drugs

(AlphaFold — DeepMind)

T1037 / 6vra T1049 / 6yaf
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

® Experimental result

® Computational prediction

What enabled these advances? What are outstanding problems? How do we approach them?

Scale Brings Quality and Capabilities

Language models explaining jokes
1000 et

500 billion
2022
Megatron-Turing NLG (530B) Input: | tried 10000 random restarts of my neural network, but |
2 was accused of overfitting. | guess no good seed goes unpunished.

GPT-3 (1758)

[N
o
o

Megatron-LM (8.3B)

1.3B model: The joke is that if you try 10000 different seed choices,
you'll eventually find one that works, but you'll be accused of
overfitting.

-
o

[N

175B model: This joke is a play on words related to neural networks,
a type of machine learning algorithm.
The punchline, "l guess no good seed goes unpunished," is a play on
the phrase "no good deed goes unpunished." In this case, "good
seed" refers to a starting point for the random restarts, and the joke
0.01 implies that even when trying to improve the neural network's

2018 2019 2020 2021 2022 performance, the person is still accused of overfitting.

BERT-Large (340M)

Model Size (in billions of parameters)

100 million °*

2018 ELMo (94M)

Scale is more closely tied to advances in ML than ever before

Core Challenge with Scale: Efficiency

Accuracy

Larger/slower

model
*

Iy

Is it possible to get there?

Smaller/faster
» model

Efficiency

Efficiency eases training, deployment,
and facilitates research

Write a 4000 word essay on the best ice cream flavor

11 tokens in prompt
Up to 4,000 tokens in response

This model can only process a
maximum of 4,001 tokens in a single
request, please reduce your prompt or

response length.
Learn more about pricing

Efficiency unlocks new capabilities
(e.g., long context)

)

1. Efficient Training

Question: how to train Transformers efficiently?

2. Efficient Adaptation

Question: how to finetune Transformers efficiently?

3. Efficient Model Architectures

Question: how to design a new model with low inference cost

Approach to Efficiency: Understanding Algorithms & Systems

Fundamental algorithms Hardware accelerators & distributed systems

Scaled Dot Product
X Attention

JE LI 11 tl

l Linear 'J' Linear ',]l L|near|J

Fast matrix-vector multiply Attention mechanism Block-oriented device Asymmetric memory hierarchy

Main Ildea: Hardware-aware Algorithms

I0-awareness:

reducing reads/writes to GPU memory yields significant speedup

Outer Loop

R sl o RS
K:dxN
Copy Block to SRAM
Q:Nxd ¥l _ Outerloop = y.nxq

- e L R 2]
SRAM: 19TB/s (20 MB) X .
oo e e e o e e e e T
HBM: 1.5 TB/s (40 GB) | Copy
HBM Compute Block
i |
k on SRAM |
LWETLN IO LIS DRAM: 12.8 GB/s |
(CPU DRAM) (>178) .
|

Memory Hierarchy with Output to HBM
Bandwidth & Memory Size SmQKIV: Nxd

Inner Loop

doo1 Jauu|

Inner Loop

FlashAttention

FlashAttention: fast and memory-efficient attention
algorithm, with no approximation

D., Fu, Ermon, Rudra, Ré, NeurlPS 2022
D., 2023

dooq121nQ

State-space expansion:
expand recurrent states in SRAM only to avoid memory cost

IS

Selection Mechanism

Mamba: selective state-space model that matches Transformers on
language model, with fast inference and up to 1M context

Gu*, D.*, 2023.

i
e | | L 4
* \\\ Bt|: i C, Ve
N .
Ny B iscrtie ?At

1. Flash-Attention

Motivation: Modeling Long Sequences

Enable
New Capabilities

NLP: Large context required to

understand books, plays,
codebases.

Close Reality Gap

Computer vision: higher
resolution can lead to better,
more robust insight.

2

Open New Areas

Time series, audio, video,
medical imaging data naturally
modeled as sequences of
millions of steps.

Efficiency is the Bottleneck for Modeling Long Sequences with Attention

Context length: how many other Increasing context length slows down (or stops) training
elements in the sequence does
the current element interact with. GPT3 training speed
250
B Megatron-LM 2K

" HEE Megatron-LM 8K

@ 200 A

[a

@]

i

150 - 142 149

°

@

9,

o

v 100

(@)}

£

£

lf_,E 50

OOM

GPT3-1.3B GPT3-2.7B

Background: Attention is the Heart of Transformers

Encoder

Encoder Attention

Q \'

Encoder

Transformer Encoder

Background: Attention Mechanism

Q K
(Nxd) (Nxd)

Query Key

Typical sequence length N: 1K — 8K
Head dimension d: 64 — 128

S= QKT A = Softmax(S) \
(N x N) (N x N) (N x d)
- X
Similarity Attention prob Value
Score = row-wise normalized
similarity score

es1 esN
Softmax([sq, -, sy]) = []

e
O = Softmax(QK")V

Attention scales quadratically in sequence length N

(Nxd)

Output

Background: Approximate Attention

4 S SPARSE V)\[4(Q) LOWRANK v)
Sparse Transformer | Linformer
(Child et al. 19) (Wang et al. 20)
Reformer ¢(K)T Linear Transformer
(Kitaev et al. 20) (Katharopoulos et al. 20)
Routing Transformer < > Performer
(Roy et al. 20) (Choromanski et al. 20)

_ AN /

Approximate attention: tradeoff quality for speed fewer FLOPs

Survey: Tay et al. Long Range Arena : A Benchmark for Efficient Transformers. ICLR 2020.

Is there a fast, memory-efficient, and exact attention algorithm?

Our Observation: Attention is Bottlenecked by Memory Reads/Writes

Q K S= QKT A = Softmax(S) \Y 0
(Nxd) (Nxd) (NxN) | (N x N) (Nxd) (Nxd)
X — — X =
Query Key Similarity Attention prob Value Output
Score = row-wise normalized

similarity score
Typical sequence length N: 1K — 8K

Head dimension d: 64-128

The biggest cost is in moving the bits!
Standard implementation requires repeated R/W
from slow GPU memory

Background: GPU Compute Model & Memory Hierarchy

2. Data moved to
compute units & SRAM
for computation

Compute Compute

SRAM SRAM

2\ SRAM: 19 TB/s (20 MB)
SRAM

LB\ HBM: 1.5 TB/s (40 GB)
HBM

1. Inputs start out in
HBM (GPU memory)

3. Output written /

back to HBM

Blogpost: Horace He, Making Deep Learning Go Brrrr From First Principles.

Can we exploit the memory asymmetry to get speed up?
With I0-awareness (accounting for R/W to different levels of memory)

How to Reduce HBM Reads/Writes: Compute by Blocks

Challenges: Approaches:

(1) Compute softmax normalization without access (1) Tiling: Restructure algorithm to load block by
to full input. block from HBM to SRAM to compute attention.
(2) Backward without the large attention matrix from (2) Recomputation: Don’t store attn. matrix

forward. from forward, recompute it in the backward.

Attention Computation Overview

KT
Q 5= Q KT
A = exp(S)
Softmax row-wise l= z exp(S);

normalization constant .
14

Output

Compute by blocks: easy to split Q, but how do we split K & V? .

Tiling — 15t Attempt: Computing Attention by Blocks

Goal:
Load each block from HBM to (K(l))T (K(Z))T Example: Split K into 2 blocks
SRAM & do local computation
¥
Q — sW=qk®) | s@=¢q (k@)
y Output
174¢Y]
AD = exp(sM) A® = exp(§®@) . =
V@

normalization constant - local results?

Softmax row-wise [l _ Z exp(S(l))i + 2 exp(SZ)i] Challenge: How to compute softmax normalization with just
i

Tiling — 2"d Attempt: Computing Attention by Blocks, with Softmax Rescaling

I ! Computed in SRAM

L\ — — — = (not materialized in HBM)

o) Rescaling to
€\
v® A@ correct
! + - V® denominator

Goal: Outputwe want: [= Z exp(SW) + Z exp(8?),
Load each block from HBM to (K(l))T (K(Z))T - t - t
SRAM & do local computation A A®@
0 = - v 4+ -5 1740
NN S Vo
P N\ /’ RN
, 1 |
1 | I
: I 1
T | T !
Q —_— : s = Q (K(l)) : s@ = Q (K(Z)) :
I
. i :
I | I
" L K Wrong
Seo oo 1 R P it - Output denominator ®
. h ‘\// N 1
[, a _ AC o) Local
| v 0%~ = [16Y) M - computation
Stored in HBM I
o A = exp(sM) A® = exp(§@) . — (@
I
I
I

o = = ——

S e ——————

Tiling + Rescaling allows local computation in SRAM, without
2) _ @1 2

1 = E exp(S(l))i 1@ =1M + E exp(S())i writing to HBM, and get the right answer!

i

i

20

Tiling

Decomposing large softmax into smaller ones by scaling.

Keys (NxK)

Q @ tr(K)
NxN

Queries (NxK) Output Values
(NxK) (NxK)

Animation credit: Francisco Massa

1. Load inputs by blocks from HBM to SRAM.

2. On chip, compute attention output with respect to
that block.

3. Update output in HBM by scaling.

FlashAttention: 2-4x speedup, 10-20x memory reduction

FlashAttention Speedup, A100 FlashAttention Memory Reduction
A 20
— 4 o
g 9
1]
g, £ 15
0 X
£ s
X 2 - -§ 10 A
5 3
S o4
0 14 5
v 2
o o
@ =
(]
0 - = -
128 256 512 1024 2048 4096 128 256 512 1024
Sequence Length Sequence Length
mmm Dropout + Masking B Dropout + Masking

mmm Masking Only
B No Masking, No Dropout

2-4x speedup — with no approximation!

10-20x memory reduction — memory linear in sequence length

GPT3: Faster Training, Longer Context, Better Model

GPT3 training speed

250

wn

% 200 W= F
a

@)

|

L

F 150 - 14
°

]

]

o

v 100

o

c

£

g 50

I Megatron-LM 2K
I Megatron-LM 8K

lashAttention 8K

170 175

2.4xT
2

GPT3-1.3B GPT3-2.7B

FlashAttention speeds up GPT-3 training by 2x,

increase context length by 4x, improving model quality

Shoeybi et al. arXiv:1909.08053 2019.

Model Val perplexity
on the Pile (lower better)
GPT-1.3B, 2K context 5.45
GPT-1.3B, 8K context 5.24
GPT-2.7B, 2K context 5.02
GPT-2.7B, 8K context 4.87
ChapterBreak (PG19) accuracy

— GPT3-1.3B
—— GPT3-2.7B

N w w
o5 N (o2}

Suffix Identification Acc.

[N
=

256 512

1K 2K 4K 8K

Sequence Length

Summary — FlashAttention

FlashAttention: fast and memory-efficient algorithm for exact attention
Key algorithmic ideas: tiling, recomputation

Upshot: faster training, better models with longer sequences

2. Low-Rank Adaptation

Revisit the full fine-tuning

* Assume we have a pre-trained autoregressive language model Py (y|x)

* E.g., GPT based on Transformer

e Adapt this pretrained model to downstream tasks (e.g., summarization, NL2SQL,
reading comprehension)

* Training dataset of context-target pairs {(x;, ;) }i=1,..n

* During full fine-tuning, we update ¢, to ¢, + A¢ by following the gradient to
maximize the conditional language modeling objective

5%
max 2 z log(Py (vel%, <))
t=1

(x.y)

LoRA: low rank adaptation (Hu et al., 2021)

* For each downstream task, we learn a different set of parameters A¢

* [Ag| = |,
* GPT-3 hasa | ¢, | of 175 billion
* Expensive and challenging for storing and deploying many independent instances

* Key idea: encode the task-specific parameter increment A¢p = A¢(0®) by a smaller-
sized set of parameters 0, |0| < | ¢, |

* The task of finding A¢p becomes optimizing over ©

1yl
max)) 10g(Py,+ap() 0l Y<)
Gy T

Low-rank-parameterized update matrices

* Updates to the weights have a low “intrinsic
rank” during adaptation (Aghajanyan et al. 2020) hi

e W, € R%*k: 3 pretrained weight matrix

Pretrained
Weights

* Constrain its update with a low-rank
decomposition:

where B € R¥*", 4 € R™*,r « min(d, k) ’ ‘

* Only A and B contain trainable parameters

Low-rank-parameterized update matrices

e Asone increase the number of trainable
parameters, training LORA converges to training
the original model

Pretrained
Weights

* No additional inference latency: when switching
to a different task, recover W, by subtracting BA
and adding a different B'4’

e Often LoRA is applied to the weight matrices in
the self-attention module

Applying LoRA to Transformer

Model & Method # Trainable E2E NLG Challenge

Parameters | BLEU NIST MET ROUGE-L CIDEr
GPT-2 M (FT)* 354.92M | 68.2 8.62 46.2 71.0 2.47
GPT-2 M (Adapter™)* 0.37M | 66.3 8.41 45.0 69.8 2.40
GPT-2 M (Adapter™)* 11.09M | 68.9 8.71 46.1 71.3 247
GPT-2 M (Adapter™) 11.09M | 67316 850107 4601, 7074, 24410
GPT-2 M (FTTP?)* 25.19M | 68.1 8.59 46.0 70.8 241
GPT-2 M (PreLayer)* 0.35M | 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LoRA) 035M | 704.; 885, 468., 71.8.; 253,
GPT-2 L (FT)* 774.03M | 685 8.78 46.0 69.9 2.45
GPT-2 L (Adapter™) 0.88M | 69.11; 8.68+03 46319 Tldyi, 2494,
GPT-2 L (Adapter™) 23.00M | 68913 870104 46117 7131, 24510
GPT-2 L (PreLayer)* 0.77M | 70.3 8.85 46.2 71.7 2.47
GPT-2 L (LoRA) 0.77M | 704.; 889, 468., 720, 24710

GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG Challenge. For all metrics,
higher is better. LoRA outperforms several baselines with comparable or fewer trainable parameters

Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
"Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

Understanding low-rank adaptation

Which weight matrices in Transformers should we apply LoRA to?

| # of Trainable Parameters = 18M

o 7 //’. f /e 4 8 /,,7" 7 V4 ,/,f' ,,/“ /O ’

;\;eriﬁh: Type ’ 118 | 118 3 V; 1 Vt8 2 W'ﬁWL Wuu, W, W k.,zn = R
WikiSQL (£0.5%) | 704 700 730 732 71.4 737 737 Wv gives the best
MultiNLI (+0.1%) | 91.0 90.8 91.0 913 91.3 91.3 91.7 performance overall.

What is the optimal rank for LoRA?

Weight Type r=1 r=2 r=4 r=8 r=64
ght 1yp

.) W, 688 696 705 704 700
M) W, W, 734 733 7131 138 T35 LoRA already performs
Wy Wi Wo,W, | 741 737 740 740 739 competitively with a
W, 90.7 909 91.1 90.7 90.7 very small r
MultiNLI (£0.1%) w,, W, 913 914 913 916 914
W, Wi W,,W, | 912 917 917 915 914

From LoRA to QLoRA

* QLORA improves over LoRA by
guantizing the transformer model to 4-
bit precision and using paged
optimizer to handle memory spikes

* 4-bit NormalFloat (NF4)

* A new data type that is information
theoretically optimal for normally
distributed weights

LoRA

16-bit Transformer

QLoRA

., g

Parameter Updates ==
Gradient Flow ==

4-bit Transformer Paging Flow ==

Dettmers, Tim, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. "Qlora: Efficient finetuning of quantized lims." arXiv preprint arXiv:2305.14314 (2023).

Summary- LoRA and QLoRA
* Low-rank adaptation for efficient finetuning

* QLoRAfor finetuning quantized Transformers

3. Mamba

Attention (Transformers)

Q
1 NN

Scaled Dot-Product
Attention

S L

| Linear '_}I Linear l_]' Linear '_} E

\% K Q

L

Dense interactions

v Strong performance, parallelizable

X Quadratic-time training, linear-time inference
(in the length of the sequence)

Recurrent Neural Networks (RNN)

® ® ®
T ﬂ t
r_—J
| |
&) © &)
Sequential
v Natural autoregressive (causal) model
X Slow training on accelerators and

poor optimization (vanishing gradients)

RNN for Inference Efficiency

- Transformer C] RNN

) ©
Inference <+— Primary motivation RNNs

speed]

36

Selective State Spaces

S

he—q T | h,
| uj !
Xt i — Ct Yt
Ll E
v Efficiency: parallelizable training + fast inference
v Performance: matches Transformers on LM

v Long Context: improves up to million-length sequences

Hardware-aware State Expansion

—_—— 7 N >
—— > S z
__ [] N

hi—1 : h¢

Xt \\\ / : Ct Yt
|
\\ . GPU
\ FTTTTT Discrtize ;] t T SRAM
— Proleet . " GPU HBM
- Selection Mechanism

S

T
E—
—
W

Idea: Only materialize the expanded state in more
efficient levels of the memory hierarchy

Language Modeling — Scaling Laws

Perplexity (log scale)

Scaling Laws on The Pile (Sequence Length

2x10'

10"

=== RetNet

—— H3++

- Transformer++
=== Mamba

Hyena

6x10°

RWKV
T T | T T T T T T T T I
1 01 9 1 020

Transformer
FLOPs (log scale)

Transformer: GPT-3 model + training recipe

Language Modeling — Zero-shot Evals

MODEL TOKEN. PILE LAMBADA LAMBADA HELLASWAG PIQA ARC-E ARC-C WINOGRANDE AVERAGE
PPL| PPL] Acct acct Acct AcctT aAcctT aAcct Acc t
Hybrid H3-130M GPT2 — 89.48 25.77 31.7 64.2 44.4 24.2 50.6 40.1
Pythia-160M NeoX 29.64 38.10 33.0 30.2 61.4 43.2 24.1 51.9 40.6
Mamba-130M NeoX 10.56 16.07 44.3 353 64.5 48.0 243 51.9 44.7
Hybrid H3-360M GPT2 — 12.58 48.0 41.5 68.1 51.4 24,7 54.1 48.0
Pythia-410M NeoX 9.95 10.84 51.4 40.6 66.9 §2:1 24.6 53.8 48.2
Mamba-370M NeoX 8.28 8.14 55.6 46.5 69.5 551 28.0 55.3 50.0
Pythia-1B NeoX 7.82 7.92 56.1 47.2 70.7 57.0 271 53.5 519
Mamba-790M NeoX 7.33 6.02 62.7 55.1 72.1 61.2 29.5 56.1 57.1
GPT-Neo 1.3B GPT2 —_ 7.50 572 48.9 71.1 56.2 259 54.9 52.4
Hybrid H3-1.3B GPT2 — 11.25 49.6 52.6 713 59.2 28.1 56.9 53.0
OPT-1.3B OPT — 6.64 58.0 53.7 72.4 56.7 29.6 59.5 55.0
Pythia-1.4B NeoX 7.51 6.08 61.7 52.1 71.0 60.5 28.5 57.2 55.2
RWKV-1.5B NeoX 7.70 7.04 56.4 52.5 72.4 60.5 294 54.6 54.3
Mamba-1.4B NeoX 6.80 5.04 64.9 59.1 74.2 65.5 32.8 61.5 59.7
GPT-Neo 2.7B GPT2 — 5.63 62.2 55.8 72.1 61.1 30.2 57.6 56.5
Hybrid H3-2.7B GPT2 — 7.92 S0 7 59.7 73.3 65.6 32.3 61.4 58.0
OPT-2.7B OPT —_ 5:12 63.6 60.6 74.8 60.8 313 61.0 58.7
Pythia-2.8B NeoX 6.73 5.04 64.7 59.3 74.0 64.1 32.9 59.7 59.1
RWKV-3B NeoX 7.00 5.24 63.9 59.6 73.7 67.8 33.1 59.6 59.6
Mamba-2.8B NeoX 6.22 4.23 69.2 66.1 75.2 69.7 36.3 63.5 63.3
GPT-J-6B GPT2 - 4.10 68.3 66.3 75.4 67.0 36.6 64.1 63.0
OPT-6.7B OPT - 4.25 67.7 67.2 76.3 65.6 349 65.5 62.9
Pythia-6.9B NeoX 6.51 445 67.1 64.0 T2 67.3 35.5 61.3 61.7
RWKV-7.4B NeoX 6.31 4.38 67.2 65.5 76.1 67.8 37.5 61.0 62.5

Mamba matches/beats Transformers of similar size

Summary — Mamba

Match or beat strongest Transformer architecture on language
Key algorithmic ideas: selection mechanism, hardware-aware state expansion

Upshot: better models with linear (instead of quadratic) scaling in sequence length

