
Solving Real-World Tasks
with AI Agents

Shuyan Zhou
Language Technologies Institute

Carnegie Mellon University
shuyanzh@cs.cmu.edu

shuyanzhou.com

mailto:shuyanzh@cs.cmu.edu
http://shuyanzhou.com

LLMs are useful, people are optimistic about the future

2[Dell’Acqua et al, 2023] [Bloomberg 2023]

Quality of work

w/ GPT-4
w/o GPT-4

Density

Sparks of Artificial General Intelligence:
Early experiments with GPT-4

Sébastien Bubeck Varun Chandrasekaran Ronen Eldan Johannes Gehrke

Eric Horvitz Ece Kamar Peter Lee Yin Tat Lee Yuanzhi Li Scott Lundberg

Harsha Nori Hamid Palangi Marco Tulio Ribeiro Yi Zhang

Microsoft Research

Abstract

Artificial intelligence (AI) researchers have been developing and refining large language models (LLMs)
that exhibit remarkable capabilities across a variety of domains and tasks, challenging our understanding
of learning and cognition. The latest model developed by OpenAI, GPT-4 [Ope23], was trained using an
unprecedented scale of compute and data. In this paper, we report on our investigation of an early version
of GPT-4, when it was still in active development by OpenAI. We contend that (this early version of) GPT-
4 is part of a new cohort of LLMs (along with ChatGPT and Google’s PaLM for example) that exhibit
more general intelligence than previous AI models. We discuss the rising capabilities and implications of
these models. We demonstrate that, beyond its mastery of language, GPT-4 can solve novel and di�cult
tasks that span mathematics, coding, vision, medicine, law, psychology and more, without needing any
special prompting. Moreover, in all of these tasks, GPT-4’s performance is strikingly close to human-level
performance, and often vastly surpasses prior models such as ChatGPT. Given the breadth and depth of
GPT-4’s capabilities, we believe that it could reasonably be viewed as an early (yet still incomplete) version
of an artificial general intelligence (AGI) system. In our exploration of GPT-4, we put special emphasis
on discovering its limitations, and we discuss the challenges ahead for advancing towards deeper and more
comprehensive versions of AGI, including the possible need for pursuing a new paradigm that moves beyond
next-word prediction. We conclude with reflections on societal influences of the recent technological leap and
future research directions.

Contents

1 Introduction 4
1.1 Our approach to studying GPT-4’s intelligence . 6
1.2 Organization of our demonstration . 8

2 Multimodal and interdisciplinary composition 13
2.1 Integrative ability . 13
2.2 Vision . 16

2.2.1 Image generation beyond memorization . 16
2.2.2 Image generation following detailed instructions (à la Dall-E) 17
2.2.3 Possible application in sketch generation . 18

2.3 Music . 19

3 Coding 21
3.1 From instructions to code . 21

3.1.1 Coding challenges . 21
3.1.2 Real world scenarios . 22

3.2 Understanding existing code . 26

1

ar
X

iv
:2

30
3.

12
71

2v
5

 [c
s.C

L]
 1

3
A

pr
 2

02
3

$1.3T revenue from generative AI in 2032

LLMs can assist humans in many self-contained tasks

3

“Write a data loader to read
this csv file”

def data_loader
…

LLMs

Speed up a small part of a task
Not automate the tasks in an
end-to-end fashion

My research goal

4

Develop software

Perform
scientific
research

Automate various tasks with
minimal human intervention

action

feedback

The dream of AI is far more wild

AI agents

Literature review

Experiments

Reproduce results

Personalized health
and wellness

Finance and growth
management

Questions to answer

5

How good are strong LLMs (e.g., GPT-4)? How can we
perform reliable evaluation?

What are the fundamental gaps between LLMs and AI
agents?

How could we mitigate the gaps?

LLMs know up to a
cutoff date

Natural language has
inherent limitations

Talk Overview

6

Evaluating AI
agents

Learning new
knowledge by

reading

Speaking AI’s
“language”

- Zhou* et al., WebArena, ICLR 2024
- Wang, Cuenca, Zhou et al., MCoNaLa, F-

EACL 2023
- Wang, Zhou et al., ODEX, F-EMNLP 2023

- Zhou et al., PaP, SUKI 2022
- Zhou* et al., PaL, ICML 2023
- Madaan, Zhou et al., CoCoGen, EMNLP 2022
- Zhang, Xu, Yang, Zhou et al, Crepe, F-EACL 2023

- Zhou et al., DocPrompting, ICLR 2023
- Zhou* et al., Hierarchical Procedural KB,

ACL 2022

How good are LLMs?

Significant gap in benchmarks vs real-world applications

7

[Liu et al., Miniwob++, 2018]

“Play my favorite music”

Task-solving rate on
Miniwob++

human

GPT 4…

96.3%

Significant gap in benchmarks vs real-world applications

8

Task-solving rate on
Miniwob++

human

GPT 4…

96.3%

“Assign this issue to myself”

Requirements for the agent evaluation

Zhou* et al, WebArena: A realistic web environment for building autonomous agents, ICLR 2024 9

Realistic
interactive

environment

Useful &
complex

tasks

Easy
extendability

Reliable
evaluation

Existing evaluations make trade-offs between them

WebArena fulfills all requirements without compromise

Useful &
complex

tasks

Reliable
evaluation

Realistic
interactive

environment

10

Easy
extendability

Invite Alexis to
my agent repo

“Alexis
invited”

Checking the
members..

Zhou* et al, WebArena: A realistic web environment for building autonomous agents, ICLR 2024

with rich contents

Example task in WebArena

11

812 long-horizon, realistic computer tasks

Zhou* et al, WebArena: A realistic web environment for building autonomous agents, ICLR 2024

Identify the customer by
examining the order history
in the store portal

Buy some flowers online
to the customer

Outcome-based evaluation

fl

• A new order with flowers

• Shipped to Alex Martin

Find the customer who has spent the most money in my store over the past 56 days.
Send the customer some flowers.

Shop
owner Customer appreciation task

W
eb

A
re

na
 T

as
k

Su
cc

es
s

Ra
te

 (%
)

14.9
8.97.11.71.4

78.2

LLMs are the critical yet early step toward AI autonomy

Human Llama2
70B Mixtral Gemini

Pro GPT 3.5 GPT 4

Huge gap!

Open-source models struggle
{

12Zhou* et al, WebArena: A realistic web environment for building autonomous agents, ICLR 2024

LLMs lack several critical capabilities to be AI agents

13Zhou* et al, WebArena: A realistic web environment for building autonomous agents, ICLR 2024

LLMs lack critical capabilities to be AI agents

Tool use

Alex’s total spend is
78.56 x 7 + 46.7 = 543.6

56 days ago is 5/20/2023

• Scarce in natural language corpus
• Not consider tool use in standard

LLM development

LLMs

AI agents
• Employ tools to enhance accuracy

and expand capabilities

14Zhou* et al, WebArena: A realistic web environment for building autonomous agents, ICLR 2024

LLMs lack critical capabilities to be AI agents

Abstract reasoning

Fork all repos owned by Meta
Fork `transformers`

Fork `metaseq`

• Inconsistent performance
across conceptually similar
tasks

LLMs

AI agents
• Learn the common principles
• Maintain steady and reliable

performance

15

Find the customer
who spent […] Send
the customer […]

Zhou* et al, WebArena: A realistic web environment for building autonomous agents, ICLR 2024

How can I find all orders?

LLMs lack critical capabilities to be AI agents

16Zhou* et al, WebArena: A realistic web environment for building autonomous agents, ICLR 2024

Up-to-date knowledge

LLMs lack critical capabilities to be AI agents

How can I find all orders?

GPT-4 knowledge cutoff: Sep 2021
WebArena application version: Jan 2023

• Knowledge of LLMs is
limited by the training cutoff

LLMs

AI agents
• Up-to-date knowledge to deal

with the evolving world

Learning by
reading docs

Speaking AI’s
“language”

17

Abstract reasoning

Tool use
Up-to-date knowledge

Zhou et al, Procedures as programs: hierarchical control of situated agents through natural language, SUKI 2022

Today is 1/20/2024. I first subtract 20
days […] The date 56 days ago is
12/20/2023
[…] Order 1 was placed on 9/18/2023,
which is not within the last 56 days
[…] 765.8 + 35.4 =

[Wei et al., Chain-of-thought]

Generating natural language for various tasks

18

Alex Martin made three orders: $47.51 on 9/18/2023, $765.8 on 1/1/2024 and
$35.4 on 1/9/2024. How much he spent in my store in the last 56 days?

$785.4

Zhou et al, Procedures as programs: hierarchical control of situated agents through natural language, SUKI 2022

Today is 1/20/2024. I first subtract 20
days […] The date 56 days ago is
12/20/2024
[…] Order 1 was placed on 9/18/2023,
which is not within the last 56 days
[…] 765.8 + 35.4 =

[Wei et al., Chain-of-thought]

Natural language exhibits limitations in performing tasks

19

Confine reasoning and solving within LLMs

Today is 1/20/2024, Alex made three orders: $47.51 on 9/18/2023, $765.8 on
1/1/2024, $35.4 on 1/9/2024. How much has he spent in the last 56 days?

$785.4

Today is 1/20/2024. I first subtract 20
days […] The date 56 days ago is
12/20/2024
[…] Order 1 was placed on 9/18/2023,
which is not within the last 56 days
[…] 765.8 + 35.4 =

[Wei et al., Chain-of-thought]

Today is 2/13/2024. I first subtract 13
days […] The date 192 days ago is
8/5/2023.
[…] Order 1 was placed on 9/18/2023,
which is within the last 192 days
[…] 47.51 + 765.8 + 35.4 …

Zhou et al, Procedures as programs: hierarchical control of situated agents through natural language, SUKI 2022

Natural language exhibits limitations in performing tasks

20

Confine reasoning and solving within LLMs

Today is 1/20/2024, Alex made three orders: $47.51 on 9/18/2023, $765.8 on
1/1/2024, $35.4 on 1/9/2024. How much has he spent in the last 56 days?

$785.4

192 days
2/13/2024

Express solutions at the example level

?

Maybe AI agents should speak another
“language”, but what is that?

21

22

Solving various tasks by reasoning with programs (PaL)

Zhou* et al, PaL: Program-aided language models, ICML 2023

Today is 1/20/2024, Alex made three orders: $47.51 on 9/18/2023, $765.8 on
1/1/2024, $35.4 on 1/9/2024. How much has he spent in the last 56 days?

[...]
The first order is $47.51
It was made on 9/18/2023
[...]
Now check if the first order
was placed within the period
9/18/2023 is before the period,
so it is not included
[...]

[Wei et al., Chain-of-thought] PaL
>>> The total is $801.2

order1_amount = 47.51
order_1_date = datetime(2023,9,18)

check if order 1 is within the period
if order_1_date > start_date:
 alex_total_spend += order1_amount
[...]

[...]

[...]

So the answer is $801.2

23

Key design choices of PaL

Today is 1/20/2024, Alex made three orders: $47.51 on 9/18/2023, $765.8 on
1/1/2024, $35.4 on 1/9/2024. How much has he spent in the last 56 days?

order1_amount = 47.51
order2_amount = 765.8
[...]
check if order 1 is within 56 days
[...]

a = 47.51
b = 765.8
return float(a + b)

[Chowdhery et al, PaLM]
[Mishra et al, Lila]

[Austin el at, Learning ..]

Zhou* et al, PaL: Program-aided language models, ICML 2023

Interleave between natural language
and programming language

• Abundant
• Easily comprehensible

Python

Alex Martin made three orders: $47.51 on 9/18/2023, $765.8 on
1/1/2024 and $35.4 on 1/9/2024. How much he spent in my
store in the last 56 days?

24

Few-shot in-context learning with coding-proficient LLMs

?

Input 1

Program 1
Input 2

Program 2

In-context examples

…

coding-proficient LLM

Zhou* et al, PaL: Program-aided language models, ICML 2023

• Manually create
• Select from a training set

[...]
order1_amount = 47.51
order_1_date = ...
check if [...]

PaL offloads the solving to tools seamlessly
Task solving accuracy (%) on

date understanding (Bigbench)

63.4

76.2

64.8

PaL

from datetime import datetime, timedelta

today = datetime(2024, 1, 20)
calculate 56 days ago
start_date = today - timedelta(days=56)
[...]
if order_1_date > start_date:
[...]

25

CoT
[Wei et al., 2022]

PaL w/
only PL

[Chowdhery et al, PaLM]
[Mishra el at, Lila]

[Austin el at, Learning ..]
Zhou* et al, PaL: Program-aided language models, ICML 2023

from ..
a = ..
b = ..
c = a - timedelata(days=56)

Today is 1/20/2024 […] How much has he
spent in the last 56 days?

PaL > Large language models + Tools

26

65.4
72.0

63.1

PaL

Alex made two orders within the
last 56 days: one for $765.8 and
another for $35.4. How much did he
spend in total?

[…] the total of two orders is
765.8 + 35.8 […]

order1_value = 765.8
[...]

[…] the total of two orders is
765.8 + 35.8
<calculator(765.8+35.8)=801.6>
801.6[…]

CoT
[Wei et al., 2022]

CoT
+

Calculator
[Schick et al., Toolformer]

Zhou* et al, PaL: Program-aided language models, ICML 2023

Ta
sk

 so
lv

in
g

ac
cu

ra
cy

 (%
) o

n
G

SM
8k

• Parsing failures
• Error propagation
• Limited toolset

Natural language performs example-level problem solving

27Zhou* et al, PaL: Program-aided language models, ICML 2023

Today is 1/20/2024. I first subtract 20
days […] The date 56 days ago is
12/20/2024
[…] Order 1 was placed on 9/18/2023,
which is not within the last 56 days
[…] 765.8 + 35.4 =

Today is 2/13/2024. I first subtract 13
days […] The date 192 days ago is
8/5/2023.
[…] Order 1 was placed on 9/18/2023,
which is within the last 192 days
[…] 47.51 + 765.8 + 35.4 …

Slight changes result in significant solution difference

Indirect

Today is 1/20/2024, Alex made three orders: $47.51 on 9/18/2023, $765.8 on
1/1/2024, $35.4 on 1/9/2024. How much has he spent in the last 56 days?

today = datetime(2024,2,13)
start_date = today - \
 timedelta(days=192)
[...]
if order_1_date > start_date:
 total += order_1_amount
[...]

today = datetime(2024,1,20)
start_date = today - \
 timedelta(days=56)
[...]
if order_1_date > start_date:
 total += order_1_amount
[...]

Programs encourage express “task templates”

28Zhou* et al, PaL: Program-aided language models, ICML 2023

PaL

direct

Programs enhance LLMs in using in-context examples

29Zhou* et al, PaL: Program-aided language models, ICML 2023

Ta
sk

 so
lv

in
g

ac
cu

ra
cy

 (%
)

0

1

2

3

4

Colored object
Penguins

Repeat copy
Object counting

Datasets where different examples share common
problem-solving strategies

• Maintain an object attribute list
• Spatial reasoning

What’s the color of the right most object?

What’s the color of the object left to
the goggle?

Example tasks in colored objects

30Zhou* et al, PaL: Program-aided language models, ICML 2023

Ta
sk

 so
lv

in
g

ac
cu

ra
cy

 (%
)

0

25

50

75

100

Colored object
Penguins

Repeat copy
Object counting

96.790.693.395.1

7368.8
79.286.3

CoT PaL

Datasets where different examples share common
problem-solving strategies

Programs enhance LLMs in using in-context examples

Bonus: Programs naturally encode structures

31

class Graph:
 goal = "Get the total spend of
 Alex within 56 days"
 def __init__(self):

 identify_date_56_days_ago = Node()
 verify_order1_date = Node()
 [...]

By a coding-proficient model

Madaan, Zhou et al, Large language models of code are few-shot commonsense learners, EMNLP 2022
Zhang, Xu, Yang, Zhou et al, Causal Reasoning of Entities and Events in Procedural Texts, F-EACL 2023

Identify the date 56
days ago

Verify order 1’s
date

Verify order 2’s
date

Verify order 3’s
date

Sum the qualified
orders

“Get Alex’s total spend within 56 days”

 identify_date_56_days_ago.children = [
 verify_order1_date,
 verify_order2_date
 verify_order3_date
]

Hypothesis 1: Corpus
• Pre-training corpus for code models contains procedural knowledge

useful for these tasks, e.g., game engine

Code snippet taken from https://github.com/allenai/ScienceWorld/ 32

class BakeACake:
 def __init__(self) -> None:
 self.find_recipe = Node()
 self.gather_ingredients = Node()
 self.mix_ingredients = Node()
 self.find_recipe = Node()
 self.preheat_oven_at_375f = Node()
 self.put_cake_batter_into_oven = Node()
 self.take_cake_out_after_30_min = Node()

 self.find_recipe.children = [self.gather_ingredients, self.preheat_oven_at_375f]
 self.gather_ingredients.children = [self.mix_ingredients]
 self.mix_ingredients.children = [self.put_cake_batter_into_oven]
 self.preheat_oven_at_375f.children = [self.put_cake_batter_into_oven]
 self.put_cake_batter_into_oven.children = [self.take_cake_out_after_30_min]

Hypothesis 2: Training

33

Training on code makes the model better at
procedures / long-range inference / connecting-the-dots

[Kim et al, 2023] Coding-proficient model shows stronger performance on entity tracking

PaL brings a range of problems under one roof

34

Connecting PaL and follow-up work

PaL

Improve program
generation quality

+ Multi-sample generation
[Zhou et al, PaL]

+ More modularized planning
[PaL, Jiang et al]

+ Execution feedback
[Wang et al, Sun et al]

Sophisticated domain
models

+ Finetune with program-aided
solution for specific domains
(e.g., math)
[Yue et al, Xu et al]

For multi-modal
tasks

+ APIs for other modalities
[Lu et al, Stanic et al]

Speak general-purpose
programming language with a
coding-proficient model

Tool use
Abstract reasoning

35

Speaking AI’s
“language”

Evaluating AI
agents

Learning by
reading docs

36

Find the customer
who has spent the
most money in my
store over the past 56
days. Send the
customer some
flowers.

How can I find all orders?

LLMs do not always have enough knowledge

Knowledge is limited by the training cutoff

37

Updated, new knowledgeTrained
knowledge

Time
Knowledge cutoff

How can I find all orders?

Humans adapt to new knowledge via reading

38
Direct demonstrations

Not available for new knowledge

Study scenario: using new tools by reading tool docs

39Zhou et al, DocPrompting: Generating code by retrieving the docs, ICLR 2023

Bash commands

squeue
ls

mkdtemp
numpy

Python APIs
“Make a temporary
file to save the logs”

“List slurm jobs
submitted by John”

..

“List slurm jobs
submitted by John”

DocPrompting: Retrieval-then-generation

View slurm jobs submitted by John

Retriever

squeue is used to view job
… by Slurm.

-u <user_list> —user=<..
 Specify the usernames …

-i <seconds>, -- …

-j, <job_id_list> …

Generator

Docs for new commands

squeue -u john

squeue is used to view job
… by Slurm

-u <user_list> —user=<..
 Specify the usernames …

40Zhou et al, DocPrompting: Generating code by retrieving the docs, ICLR 2023

Contrastively training the doc retriever

41

Published as a conference paper at ICLR 2023

argument in that PL. The construction of D is flexible: it can either be a comprehensive set of all
available libraries and functions in a PL, or a customized subset for the scope of a specific project.

2.1 BACKGROUND: RETRIEVAL-CONDITIONED GENERATION

Although a model may use the entire collection of documents D, only a few documents in D are
relevant for any particular intent. Further, it is usually computationally infeasible to directly condition
on the entire, unbounded, collection of documents while making predictions. Thus, we first let the
model select a subset of documents Dn = {d1, d2, .., dk} ⊆ D that are potentially relevant given n,
and refer to this subset while generating c.

Overall, we decompose the probability of generating c into the probability of choosing a particular
subset of documents P (Dn � D, n), and the probability of generating the code conditioned on the
intent and the selected documents P (c � Dn, n); finally, we marginalizing over all Dn ⊆ D:

P (c � D, n) =�Dn⊆D P (c � Dn, n) ⋅ P (Dn � D, n) (1)

assuming that c is independent of D given Dn (that is, (c � D � Dn)). Since enumerating all possible
subsets Dn is computationally infeasible, we follow the common practice and approximate the
marginalization over Dn in Equation (1) by taking the most probable subset of retrieved documentsD̂n, and then conditioning the prediction of c on these most likely documents:

D̂n ∶= argmaxDn⊆DP (Dn � D, n) P (c � D, n) ≈ P (c � D̂n, n) ⋅ P (D̂n � D, n) (2)

2.2 DocPrompting: GENERATING CODE BY RETRIEVING THE DOCS

Equation 2 implies that DocPrompting relies of two main components: A retriever R retrieves
relevant documents D̂n given the intent n; and a generator G generates the code snippet c conditioned
on the retrieved documents D̂n and the intent n, which compose a new prompt. Specifically, R
computes a similarity score s (di, n) between a intent n and every document di ∈ D. Thus, the subsetD̂n ⊆ D is the top-k documents with the highest similarity scores: D̂n = top-kdi∈D (s (di, n)).
An overview of our approach is illustrated in Figure 1: given the intent Generate HTML with python

syntax highlighting for “print(’reading docs’)”, the retrieverR retrieves three relevant documents:
d1 describes the syntax highlighting library pygments, d2 describes the class PythonLexer, and
d3 describes the HtmlFormatter class. Given these docs and the intent, the generator G generates
the code snippet c, which uses PythonLexer and HtmlFormatter from the pygment library.

3 PRACTICAL INSTANTIATIONS OF DocPrompting

DocPrompting is a general approach that is not bound to any specific model choices, and it can be
instantiated with any base retriever and generator. This section presents the concrete instantiations ofR and G that we found to provide the best performance in our experiments.

3.1 RETRIEVER INSTANTIATION

We experiment with two main types of retrievers: sparse retrievers and dense retrievers. As our sparse
retriever, we use Elasticsearch2 with the standard BM25 (Robertson and Jones, 1976). This retriever
represents documents using sparse features that rely on word frequencies, such as BM25 and TF-IDF.

As our dense retriever, we follow prior work (Chen et al., 2020; Karpukhin et al., 2020; Gao et al.,
2021): given a triplet (n, c,D∗n), where D∗n are the oracle docs for n, each d+i ∈ D∗n and n form a
positive pair (n, d+i), while each d−j ∉ D∗n and n form a negative pair �ni, d

−
j �. We train the retriever

in a contrastive fashion where the similarity score of a positive pair is maximized while that of
in-batch negative pairs is minimized. For a pair (ni, d

+
i), the loss function is defined as:

Lr = − log exp �sim(hn,hd+i)�
exp �sim(hn,hd+i)� +∑d−j ∈B�D∗n exp �sim(hn,hd−j)�

(3)

2https://github.com/elastic/elasticsearch

3

Cosine similarity

Zhou et al, DocPrompting: Generating code by retrieving the docs, ICLR 2023

View slurm jobs submitted
by John

…

squeue is used to view job
by Slurm.

42

…

ls is used to list the
information ….

dropout
dropout …

[SimCSE, Gao et al.]

Contrastively training the doc retriever

Zhou et al, DocPrompting: Generating code by retrieving the docs, ICLR 2023

Published as a conference paper at ICLR 2023

argument in that PL. The construction of D is flexible: it can either be a comprehensive set of all
available libraries and functions in a PL, or a customized subset for the scope of a specific project.

2.1 BACKGROUND: RETRIEVAL-CONDITIONED GENERATION

Although a model may use the entire collection of documents D, only a few documents in D are
relevant for any particular intent. Further, it is usually computationally infeasible to directly condition
on the entire, unbounded, collection of documents while making predictions. Thus, we first let the
model select a subset of documents Dn = {d1, d2, .., dk} ⊆ D that are potentially relevant given n,
and refer to this subset while generating c.

Overall, we decompose the probability of generating c into the probability of choosing a particular
subset of documents P (Dn � D, n), and the probability of generating the code conditioned on the
intent and the selected documents P (c � Dn, n); finally, we marginalizing over all Dn ⊆ D:

P (c � D, n) =�Dn⊆D P (c � Dn, n) ⋅ P (Dn � D, n) (1)

assuming that c is independent of D given Dn (that is, (c � D � Dn)). Since enumerating all possible
subsets Dn is computationally infeasible, we follow the common practice and approximate the
marginalization over Dn in Equation (1) by taking the most probable subset of retrieved documentsD̂n, and then conditioning the prediction of c on these most likely documents:

D̂n ∶= argmaxDn⊆DP (Dn � D, n) P (c � D, n) ≈ P (c � D̂n, n) ⋅ P (D̂n � D, n) (2)

2.2 DocPrompting: GENERATING CODE BY RETRIEVING THE DOCS

Equation 2 implies that DocPrompting relies of two main components: A retriever R retrieves
relevant documents D̂n given the intent n; and a generator G generates the code snippet c conditioned
on the retrieved documents D̂n and the intent n, which compose a new prompt. Specifically, R
computes a similarity score s (di, n) between a intent n and every document di ∈ D. Thus, the subsetD̂n ⊆ D is the top-k documents with the highest similarity scores: D̂n = top-kdi∈D (s (di, n)).
An overview of our approach is illustrated in Figure 1: given the intent Generate HTML with python

syntax highlighting for “print(’reading docs’)”, the retrieverR retrieves three relevant documents:
d1 describes the syntax highlighting library pygments, d2 describes the class PythonLexer, and
d3 describes the HtmlFormatter class. Given these docs and the intent, the generator G generates
the code snippet c, which uses PythonLexer and HtmlFormatter from the pygment library.

3 PRACTICAL INSTANTIATIONS OF DocPrompting

DocPrompting is a general approach that is not bound to any specific model choices, and it can be
instantiated with any base retriever and generator. This section presents the concrete instantiations ofR and G that we found to provide the best performance in our experiments.

3.1 RETRIEVER INSTANTIATION

We experiment with two main types of retrievers: sparse retrievers and dense retrievers. As our sparse
retriever, we use Elasticsearch2 with the standard BM25 (Robertson and Jones, 1976). This retriever
represents documents using sparse features that rely on word frequencies, such as BM25 and TF-IDF.

As our dense retriever, we follow prior work (Chen et al., 2020; Karpukhin et al., 2020; Gao et al.,
2021): given a triplet (n, c,D∗n), where D∗n are the oracle docs for n, each d+i ∈ D∗n and n form a
positive pair (n, d+i), while each d−j ∉ D∗n and n form a negative pair �ni, d

−
j �. We train the retriever

in a contrastive fashion where the similarity score of a positive pair is maximized while that of
in-batch negative pairs is minimized. For a pair (ni, d

+
i), the loss function is defined as:

Lr = − log exp �sim(hn,hd+i)�
exp �sim(hn,hd+i)� +∑d−j ∈B�D∗n exp �sim(hn,hd−j)�

(3)

2https://github.com/elastic/elasticsearch

3

Cosine similarity

…

…

43

Retrieve k nearest documents

…

…

…

…

Zhou et al, DocPrompting: Generating code by retrieving the docs, ICLR 2023

Learning to read the documents

44

log p(c * |c1, c2, . . . , cn, . . . i)
View slurm jobs submitted
by shuyanzh every 5 secs

Generator

..

-u <user_list> —user=<..
 Specify the usernames …

squeue is used to view job
… by slurm

ls is used to list the
information ….

squeue -u john

Zhou et al, DocPrompting: Generating code by retrieving the docs, ICLR 2023

Retriever retrieves irrelevant information!

Learning to ignore irrelevant information

DocPrompting is applicable to various model architectures

45Zhou, Alon, Xu, Wang, Jiang, Neubig, DocPrompting, ICLR 2023

doc 1 doc 2 doc 3NL prefix generation

NL + doc 1

NL + doc 2

NL + doc 3

encoder decoder..cat

[FID, Izacard and Grave]

code

code

DocPrompting allows models to adapt to unseen tools
without explicit demonstrations

46

Bash command exact match (%)

22.55

8.949.15

2.18

CodeT5
(supervised)

+
DocPrompting

+
In-doc retrieval

OpenAI
Codex

175B

220M

Docs for held-out
commands

Retriever

Generator

Zhou et al, DocPrompting: Generating code by retrieving the docs, ICLR 2023

DocPrompting allows models to adapt to unseen tools
without explicit demonstrations

47

Docs for held-out
Python APIs

Retriever

Generator

Zhou et al, DocPrompting: Generating code by retrieving the docs, ICLR 2023

pa
ss

@
k

0

10

20

30

40

1 10 50 100 200

34.46
31.87

27.54

18.7

8.26

27.0825.5423.38

14.31

5.41

CodeT5 CodeT5+DocPrompting

Execution-based Evaluation for
Python code generation (CoNaLa)

Docs ease the mapping between NL and code

48

Re
ca

ll(
%

)

0

10

20

30

40

1 2

2

24

8

39

0

12

NL ↔ Code NL ↔ Docs (NL + Docs) ↔ Code

N-gram Matching Recall

NL CodeDocs

Zhou et al, DocPrompting: Generating code by retrieving the docs, ICLR 2023

49

Evaluating AI
agents

Learning by
reading

Speaking AI’s
“language”

What

How

Human-written docs as
learning resources

- Theorem proving [Wu et al, LeanDoJo]
- Proprietary code libraries [Zan et al, When]
- API use in products

Up-to-date knowledge

docs created by humans that
explain the tool usage

retrieval and doc-augmented
generation

+ Code document
generation

- [Zhou et al, Generating Code
Explanations with Controllability on
Purpose]

