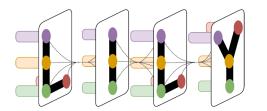
Code Language Models

Guest Lecture @ HKU



Ansong Ni Yale University ansong.ni@yale.edu

- Quick Poll
 - GitHub Copilot
 - OpenAl ChatGPT

• How to automatically write programs is one of the *oldest* and *hardest* problems in AI and CS:

This process of constructing instruction tables should be very fascinating. There need be no real danger of it ever becoming a drudge, for any processes that are quite mechanical may be turned over to the machine itself. -Alan Turing (1945)

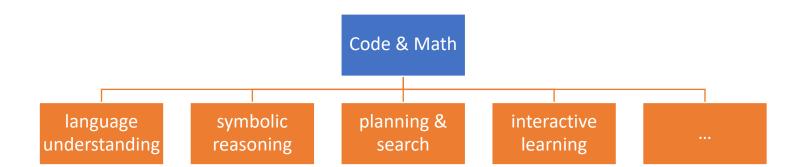
	D. Gries Editor	
Toward A matic Pro Synthesis	ogram	Zohar Manna Stanford University,* Stanford, California and Richard J. Waldinger Stanford Research Institute,† Menlo Park, California

- They relate to several important areas in CS
 - Programming Languages (PL)
 - Software Engineering (SE)
 - Machine Learning (ML)
 - Natural Language Processing (NLP)
 - Human-Computer Interaction (HCI)

PL & SE Code Al HC VLp

• ...

- Code generation is a great **testbeds for** *intelligence*:
 - language understanding
 - symbolic reasoning
 - planning & search
 - interactive learning
 - •



• They empower many real-world applications:



Database Query and Visualization

Images from: <u>https://developers.googleblog.com/2018/03/new-creative-ways-to-build-with-actions.html</u>; <u>https://support.microsoft.com/en-us/office/save-time-with-flash-fill-9159216a-75a0-4c11-82e6-8eca29cb3b89</u>; <u>https://github.com/features/copilot</u>; <u>https://code-as-policies.github.io/;</u> <u>https://www.tableau.com/blog/ask-data-simplifying-analytics-natural-language-98655</u>

Before we start...

Preliminaries

- Assume basic knowledge on terms in NLP and related to LLMs
 - E.g., BERT, GPT, prompting, autoregressive, retrieval, etc
- Mixing of terms
 - Foundation Models \approx LM \approx LLM
 - Code LM/LLM: Language models that have seen code during training
- Code and Math LMs
 - They are deeply connected as
 - Both are formal languages;
 - Both require symbolic reasoning
 - This lecture mostly focuses on code LMs but many methods apply for math LMs as well

Outline

- A brief history of code LMs
- Data collection, filtering and tokenization
- Training of code LLMs
 - Decoder-only models and code infilling
 - Encoder-only models;
 - Encoder-decoder models;
 - Reinforcement Learning
- Post-training methods for code LLMs
 - Neuro-symbolic approaches
 - Prompting methods for code
 - Retrieval-augmented generation for code

A Brief History of LMs for Code

Key Events (2020-2021)

- Feb 2020: CodeBERT [1]
 - First attempt -- 16 months after original BERT paper
 - 125M parameters
- 🔊 May 2020: GPT-3 [2]
 - People find that GPT-3 has some coding abilities
 - Though it is not specifically trained on code

Jun 2021: GitHub Copilot

- Revolutionary performance
- Multi-line, whole function completion for the first time

🕼 • Jul 2021: Codex [3]

- First 10B+ model trained specifically for code
- Hero behind GitHub Copilot

[1] Feng et al. (2020), "CodeBERT: A Pre-Trained Model for Programming and Natural Languages."
[2] Brown et al. (2020), "Language Models are Few-Shot Learners."
[3] Chen et al. (2021), "Evaluating Large Language Models Trained on Code."

Key Events (2022)

salesforce

• Feb 2022: AlphaCode [1]

- Claims 54.3% rankings in competitions with human participants
- Up to 41B, model not released nor publicly accessible
- Mar 2022: CodeGen [2]
 - Open-source 10B+ code LM
 - Later found that the model is severely under-trained (later CodeGen2)
- Apr 2022: PaLM [3]
 - PaLM-Coder is a 540B code model
 - The models are also severely under-trained (later PaLM-2)
 - Nov 2022: The Stack [5]
 - 3TB of permissively licensed code data
 - Foundational data work for many code LMs in the future

[1] Li et al. (2022), "Competition-Level Code Generation with AlphaCode."

[2] Nijkamp et al. (2022), "CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis."

[3] Chowdhery et al. (2022), "PaLM: Scaling Language Modeling with Pathways."

[4] Kocetkov et al. (2022), "The Stack: 3 TB of permissively licensed source code."

Key Events (2023)

- Feb 2023: LLaMA [1]
 - Trained with more data (1T tokens)
 - Not as large but more performant than larger models
- Mar 2023: GPT-4 [2]
 - State-of-the-art in every aspect, coding included
 - May 2023: StarCoder [3]
 - SoTA in open-source, matches Codex-12B in performance
 - Trained on the Stack
- Aug 2023: CodeLLaMA [4]
 - Shortly after the release of LLaMA 2 in Jul 2023
 - Continued training of LLaMA 2 on code

- 6
- Dec 2023: Gemini [5] and AlphaCode 2 [6]
 - AlphaCode 2 scores 85th percentile on codeforces

[1] Touvron et al. (2023), "LLaMA: Open and Efficient Foundation Language Models."

[2] OpenAI. (2022), "GPT-4 Technical Report."

[3] BigCode. (2022), "StarCoder: May the source be with you!"

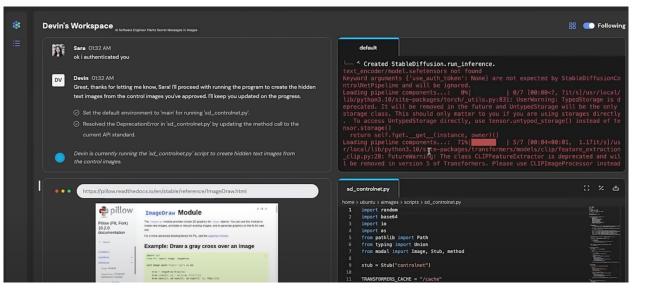
[4] Rozière et al. (2023), "Code Llama: Open Foundation Models for Code."

[5] Gemini Team (2023), "Gemini: a family of highly capable multimodal models."
 [6] AlphaCode Team (2023), "AlphaCode 2 Technical Report."

Yale

Entering 2024...

- Feb 2024: StarCoder 2 and Stack v2 [1]
 - Add more data (notebooks, PRs, Code docs...)
 - Improved performance (StarCoder2-15B rivals CodeLLaMA-34B)
- Mar 2024: Devin
 - Coding agent
 - "First AI software engineer"



[1] Lozhkov et al. (2023), "StarCoder 2 and The Stack v2: The Next Generation."
[2] Cognition AI. (2022), "https://www.cognition-labs.com/introducing-devin."

Data Collection, Filtering and Tokenization

Code Data Collection and Filtering

• Data Sources:

- Mostly GitHub and similar platforms;
- More recently:
 - Kaggle Notebooks
 - Software Documentation
 - Commits, issues, pull requests
- Quality Filtering (take [1] as an example):
 - GitHub stars >= 5
 - 1% <= Comment-to-code ratio <= 80%

• License:

- Only permissive licensed open-source repo may be used;
- E.g., MIT, Apache 2.0

Deduplication and De-contamination

• Deduplication:

- Remove (near-)duplicated files from the training data;
- Why: repeated training data can significantly hurt the performance [1]

Decontamination:

- Remove the files that contain solutions to benchmarks used for evaluation;
- Why: better measure generalization ability of trained LMs

• Methods:

- Exact match
- Near-deduplication

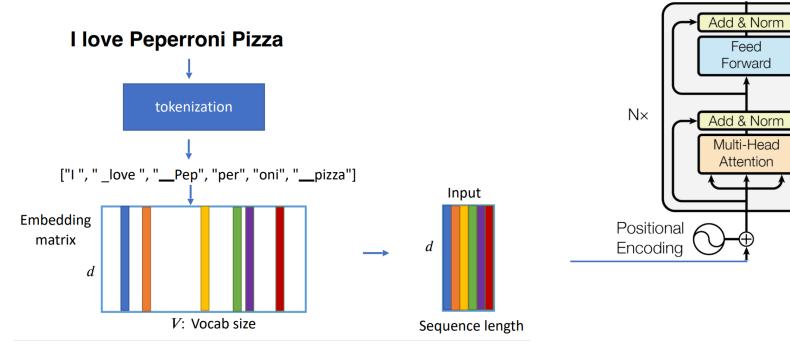
Model	Dataset Deduplication Method	
InCoder Fried et al. (2022)	Exact Match (alphanumeric token sequence)	
CodeGen (Nijkamp et al., 2022)	Exact Match (sha-256)	
AlphaCode (Li et al., 2022)	Exact Match (non-whitespace text)	
PolyCoder (Xu et al., 2022a)	Exact Match (hash)	
PaLM Coder (Chowdhery et al., 2022)	Near-deduplication (Levenshtein distance)	
CodeParrot (Tunstall et al., 2022)	Near-deduplication (MinHash)	
Codex (Chen et al., 2021)	Exact Match ("unique python files")	

Table 4: Various deduplication methods adopted for different model training data.

[1] Hernandez et al. (2023), "Scaling laws and interpretability of learning from repeated data."
 [2] Ben Allal et al. (2023), "SantaCoder: Don't Reach for the Stars!"

Tokenization for Code LM (1)

• Tokenization for LMs



• Tokenization is a **big deal** for coding task

Tokenization for Code LM (2)

- Tokenization is a *big deal* for coding task
- Code looks very similar but also very different than natural language:
 - Similar: semantic meaning of variable/function/class names
 - E.g., "is_correct", "AttentionLayer", "compute_perplexity"
 - **Different:** Whitespace characters, punctuation, indentations
 - E.g., "df.shape[1]", "def f(x):\n\tif x>0:\n\t\treturn x\n\telse:\n\t\treturn x+1"
- Trade-off between:
 - Vocabulary size
 - # tokens needed to encode the same sequence
 - Generalization ability for different tasks

Tokenization for Code LM (3)

• Trade-off between:

- Vocabulary size
- # tokens needed to encode the same sequence
- Generalization ability for different tasks \rightarrow downstream performance

Lev.	Description	Example
0	Whitespaces in the middle of tokens are prohibited and each punctuation char is treated as a separate token (except '_')	<pre>['for', 'i', 'in', 'range', '(', 'df', '.', 'shape', '[', '1', ']', ')', ':', 'NEW_LINE', 'INDENT', 'print', '(', 'i', ')', 'NEW_LINE', 'print', '(', 'df', '.', 'columns', '[', 'i', ']', ')']</pre>
1	Similar to Level 0, but tokens consisting of several punctuation chars are allowed	<pre>['for', 'i', 'in', 'range', '(', 'df', '.', 'shape', '[', '1', ']):', 'NEW'LINE INDENT', 'print', '(', 'i', ') NEW'LINE', 'print', '(', 'df', '.', 'columns', '[', 'i', '])']</pre>
2	Similar to Level 1, but dots are allowed in tokens	['for', 'i', 'in', 'range', '(', 'df', ' .shape ', '[', '1', ']) :', 'NEW'LINE INDENT', 'print', '(', 'i', ') NEW'LINE', 'print', '(', 'df', ' .columns ', '[', 'i', '])']
3	Whitespaces and single punctuation chars allowed in tokens, except NEW_LINE	['for i in range', '(df', '. shape [1', ']) :', 'NEW'LINE INDENT', 'print', '(i', ') NEW'LINE', 'print', '(df', '. column', 's [i', '])']
4	Composite tokens of arbitrary complexity are allowed	['for i in range', '(df', '. shape', '[1]', ')', ': NEW'LINE', 'INDENT print', '(i)', 'NEW'LINE print', '(df', '. columns', '[i])']

Training of Code LLMs

Decoder-only (GPT) Models

- Model architecture and pretraining objectives:
 - Mostly follow those of general-purpose LLMs, e.g., Codex follows the GPT-3
- Multi-stage training:
 - Some models are based off a general-purpose LM
 - E.g., [1] CodeGen-NL→CodeGen-Multi→CodeGen-Mono
 - E.g., [2] LLaMA 2→CodeLLaMA

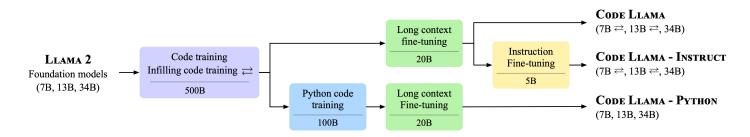


Figure 2: The Code Llama specialization pipeline. The different stages of fine-tuning annotated with the number of tokens seen during training. Infilling-capable models are marked with the \rightleftharpoons symbol.

[1] Nijkamp et al. (2023), "CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis."
[2] Rozière et al. (2023), "Code Llama: Open Foundation Models for Code."

Yale

Code Infilling: Fill in the middle

• Infilling task:

22

- <prefix>, <suffix> \rightarrow <middle>
- Trained via data augmentation [1]:
 - Preprocessing:
 - Special tokens <IF>
 - <prefix>, <middle>, <suffix>
 - <prefix>,<IF>, <suffix>,<IF>, <middle>
 - Mixing with original data
 - Training with normal autoregressive objectives

Docstring Generation

```
def count_words(filename: str) -> Dict[str, int]:
    """
    Counts the number of occurrences of each word in the given file.
    :param filename: The name of the file to count.
    :return: A dictionary mapping words to the number of occurrences.
    """
    with open(filename, 'r') as f:
        word_counts = {}
        for line in f:
            for word in line.split():
               if word in word_counts:
                    word_counts[word] += 1
                    else:
                         word_counts[word] = 1
        return word_counts
```

A use case of infilling [2]

Encoder (BERT) Models for Code (1)

- Aka code representation learning
- Code is *multi-modal* and it's usually *automatic* to obtain other modalities
- Other modalities of code may better capture the semantics of code

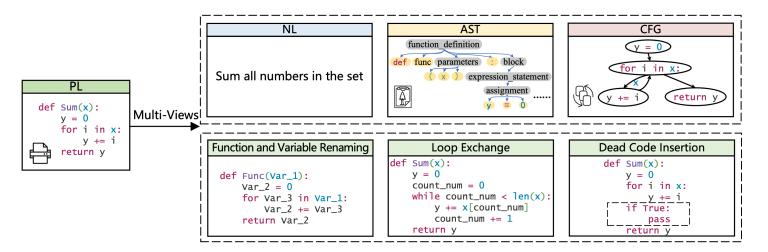
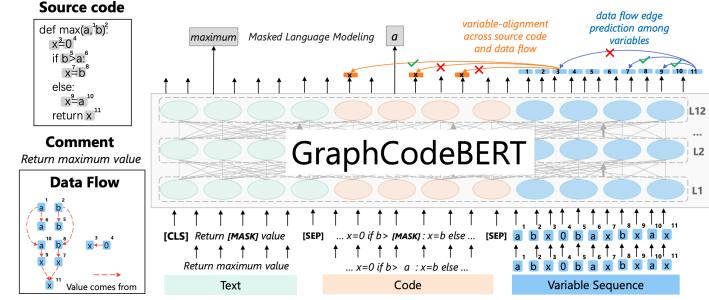


Figure 2: Multiple views of source code.

Encoder (BERT) Models for Code (2)

- Code is *multi-modal*
 - Natural language;
 - Surface form;
 - Control flow graph;
 - Abstract-syntax-tree (AST);
 - Data flow graph;
 - Dependency graph;
 - Compiled machine code;

• ...



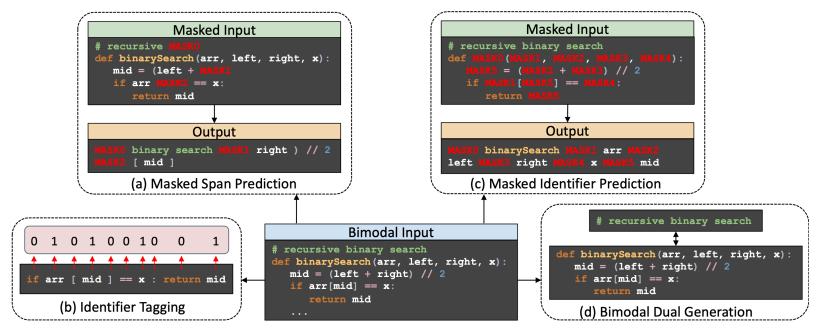
Using Data Flow Graph

• General idea: jointly encode other modalities with surface form

[1] Guo et al. (2021), "GraphCodeBert: Pre-training Code Representations with Data FLow."

Encoder-Decoder (BART/T5) Models for Code

- A mixture of **classification and generation tasks** for code are typically used during pretraining
 - Researchers get very creative in proposing new pretraining tasks
- E.g., CodeT5 [1]



[1] Wang et al. (2021), "CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation."

Reinforcement Learning (1)

- Code generation is a natural task to apply RL as we can automatically obtain *feedback from computers*:
 - Pass/fail a parser;
 - Pass/fail compilation;
 - With/without runtime error;
 - Pass/fail test cases
- Examples:
 - CodeRL [1] (offline actor-critic)
 - RLTF [2] (online w/ feedback from compiler)

- , if W^s cannot be compiled (i.e. compile error)
- $r(W^{s}) = \begin{cases} -0.6 & \text{, if } W^{s} \text{ cannot be executed with unit tests (i.e. runtime error)} \\ -0.3 & \text{, if } W^{s} \text{ failed any unit test} \end{cases}$

 - , if W^s passed all unit tests
 - Rewards used for CodeRL

Reinforcement Learning (2)

- Benefits of using RL:
 - Not limited to learning from a single solution from the dataset;
 - Release the dependency for annotated solutions;
 - Able to directly incorporate fine-grained preferences as reward function;
- Limitations:

27

- Insufficient test cases may lead to false positives [1]
- Rewards are typically sparse and underspecified [2];
 - Especially if we start with a weaker model
- It usually involves exploration (sampling) with LMs, which are expensive

Post-Training Methods for Code LLMs

Neuro-Symbolic Approaches (1): Incorporating Code Execution

- In addition to providing RL learning signal at training time
- Execution information can also help improve models at test time
- Methods:
 - Sampling + filtering (codex [1])
 - Sampling solutions then filter out those fail to pass a small subset of test cases

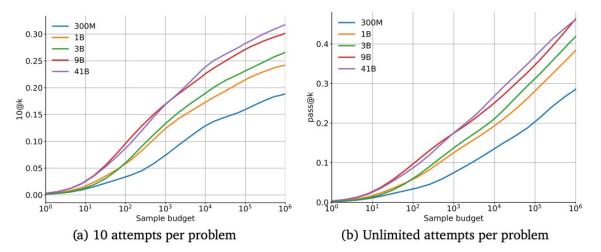
	Introductory	INTERVIEW	COMPETITION
GPT-NEO 2.7B RAW PASS@1	3.90%	0.57%	0.00%
GPT-NEO 2.7B RAW PASS@5	5.50%	0.80%	0.00%
1-shot Codex raw pass@1	4.14% (4.33%)	0.14% (0.30%)	0.02% (0.03%)
1-shot Codex raw pass@5	9.65% (10.05%)	0.51% (1.02%)	0.09% (0.16%)
1-shot Codex raw pass@100	20.20% (21.57%)	2.04% (3.99%)	1.05% (1.73%)
1-shot Codex raw pass@1000	25.02% (27.77%)	3.70% (7.94%)	3.23% (5.85%)
1-SHOT CODEX FILTERED PASS@1	22.78% (25.10%)	2.64% (5.78%)	3.04% (5.25%)
1-SHOT CODEX FILTERED PASS@5	24.52% (27.15%)	3.23% (7.13%)	3.08% (5.53%)

Codex-12B on APPs. Filtered Pass@k is significantly better

[1] Chen et al. (2021), "Evaluating Large Language Models Trained on Code."

Neuro-Symbolic Approaches (1): Incorporating Code Execution

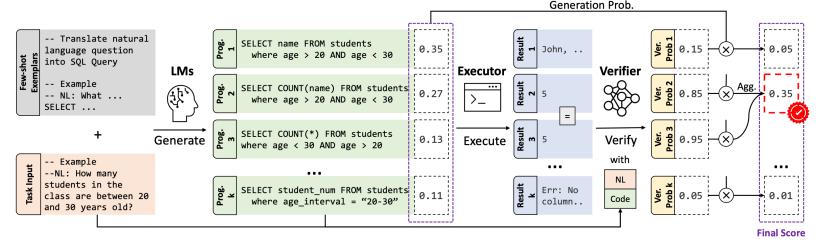
- Methods:
 - Sampling + filtering (codex [1])
 - Sampling + filtering + clustering (AlphaCode [2])
 - Sample lots of diversified program candidates (i.e., up to 1M)
 - Filter using open test cases
 - Diversify the picked candidates by clustering and selecting from different clusters



[1] Chen et al. (2021), "Evaluating Large Language Models Trained on Code."[2] Li et al. (2022), "Competition-Level Code Generation with AlphaCode."

Neuro-Symbolic Approaches (1): Incorporating Code Execution

- Methods:
 - Sampling + filtering (codex [1])
 - Sampling + filtering + clustering (AlphaCode [2])
 - Sampling + verification + voting (LEVER [3])
 - Train a verifier to verify the program with its execution results
 - Aggregate the probability from programs that reach the same execution results



[1] Chen et al. (2021), "Evaluating Large Language Models Trained on Code."

[2] Li et al. (2022), "Competition-Level Code Generation with AlphaCode."

[3] Ni et al. (2023), "LEVER: Learning to Verify Language-to-Code Generation using Execution."

Neuro-Symbolic Approaches (2): Constraint Decoding

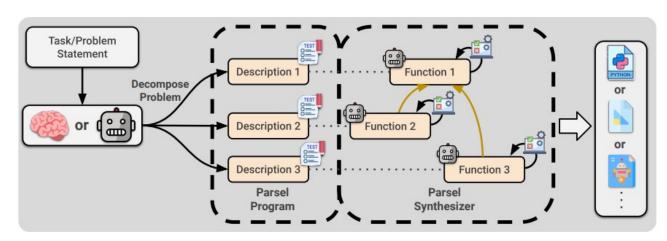
- How does code completion work before LLMs?
 - Remember: programs are in *formal languages*, which means that they are regulated by **strict grammar**;
 - Completion Engine (CE): tells you the valid next tokens w/ static analysis
 - Sounds a lot like a language model, right?
 - But it is a *symbolic* process
- Combining LM with CE [1]:
 - Filter out next token from the LM that are not approved by CE
 - Best of both worlds!

1 2	import numpy as np
3	<pre>def test():</pre>
4	🖓 a = np
	e abs
	🕼 absolute
	دی add
	🗇 add_docstring
	🗇 add_newdoc
	🗇 add_newdoc_ufunc
	🕀 all
	🗇 allclose

32

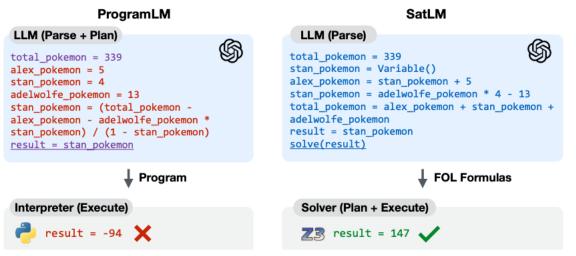
Neuro-Symbolic Approaches (3): Planning and Search

- Programs are *compositional* by design
 - Human programmers typically decompose the problem into smaller parts and write functions to solve each of them → *Planning + Implementation*
 - Given the components (e.g., individual functions), we can use a *solver* to find out if they are sufficient in completing the task → *Search*
- Example 1: Parsel [1]



Neuro-Symbolic Approaches (3): Planning and Search

- Programs are *compositional* by design
 - Human programmers typically decompose the problem into smaller parts and write functions to solve each of them → *Planning + Implementation*
 - Given the components (e.g., individual functions), we can use a *solver* to find out if they are sufficient in completing the task → *Search*
- Example 2: SatLM [1]



[1] Xi et al. (2023), "SATLM: Satisfiability-Aided Language Models Using Declarative Prompting."

Prompting Methods using Code for LLMs

- Chain-of-thought (CoT) prompting [1]
 - Explicitly write the reasoning process as **natural language**
- Program-of-thought (PoT) prompting [2] and Program-aided LM (PAL) [3]
 - Explicitly write the reasoning process as a program
 - Use *program execution* to obtain the final answer
- Works well with math and other symbolic reasoning tasks
- Also closely related to *tool-use* of LLMs

Program-aided Language models (this work)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 tennis balls. tennis_balls = 5 2 cans of 3 tennis balls each is bought_balls = 2 * 3 tennis balls. The answer is answer = tennis balls + bought balls

Input

Q: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A grocery store returned 6 unsold loaves. How many loaves of bread did they have left?

A: The bakers started with 200 loaves loaves_baked = 200 They sold 93 in the morning and 39 in the afternoon loaves_sold_morning = 93 loaves_sold_afternoon = 39 The grocery store returned 6 loaves. loaves_returned = 6 The answer is answer = loaves_baked - loaves_sold_morning - loaves_sold_afternoon + loaves_returned >>> print(answer) 74

[1] Wei et al. (2022), "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models."

[2] Chen et al. (2022), "Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks."

[3] Gao et al. (2022), "PAL: Program-aided Language Models."

35

Retrieval Augmented Generation for Code

- Retrieval-augmented generation (RAG)
 - Retrieves relevant pieces of information from some knowledge base and include them in the prompt
- When programmers code, we look at:
 - Current file (e.g., defined variables, function, classes)

 - Definitions of imported functions and classes "Repo-level Prompt Generator" [2]
- We should give such information to the LLMs as well!

[3] Parvez et al. (2021), "Retrieval Augmented Code Generation and Summarization."

^[1] Zhou et al. (2022), "DocPrompting: Generating Code by Retrieving the Docs."

^[2] Shrivastava et al. (2023), "Repository-Level Prompt Generation for Large Language Models of Code."

Summary

- A brief history of code LMs
- Data collection, filtering and tokenization
- Training of code LLMs
 - Decoder-only models and code infilling
 - Encoder-only models;
 - Encoder-decoder models;
 - Reinforcement Learning
- Post-training methods for code LLMs
 - Neuro-symbolic approaches
 - Prompting methods for code
 - Retrieval-augmented generation for code

Extended Readings

Interdisciplinary applications

- Code as Policies: Language Model Programs for Embodied Control (2023)
- Large Language Models for Compiler Optimization (2023)

• Self-Improvement with code LLMs

- STaR: Bootstrapping Reasoning With Reasoning (2022)
- CodeT: Code Generation with Generated Tests (2022)
- Teaching Large Language Models to Self-Debug (2023)
- DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines (2023)

• More ways to learn a code LLM

- Show Your Work: Scratchpads for Intermediate Computation with Language Models (2021)
- Learning Math Reasoning from Self-Sampled Correct and Partially-Correct Solutions (2022)

Hope you enjoyed the lecture!

Questions?

