
Code Language Models

Ansong Ni
Yale University

ansong.ni@yale.edu

Guest Lecture @ HKU

Yale NLP

04/05/2024

Why Build Code Language Models

1

• Quick Poll
• GitHub Copilot
• OpenAI ChatGPT

Why Build Code Language Models
• How to automatically write programs is one of the oldest and hardest

problems in AI and CS:

2

This process of constructing instruction tables should be very fascinating. There need be no real
danger of it ever becoming a drudge, for any processes that are quite mechanical may be turned
over to the machine itself. — Alan Turing (1945)

Why Build Code Language Models
• They relate to several important areas in CS
• Programming Languages (PL)
• Software Engineering (SE)
• Machine Learning (ML)
• Natural Language Processing (NLP)
• Human-Computer Interaction (HCI)
• …

3

PL & SE ML

NLPHCI

Code AI

Why Build Code Language Models
• Code generation is a great testbeds for intelligence:
• language understanding
• symbolic reasoning
• planning & search
• interactive learning
• …

4

Code & Math

language
understanding

symbolic
reasoning

planning &
search

interactive
learning …

Why Build Code Language Models

• They empower many real-world applications:

5
Images from: https://developers.googleblog.com/2018/03/new-creative-ways-to-build-with-actions.html; https://support.microsoft.com/en-
us/office/save-time-with-flash-fill-9159216a-75a0-4c11-82e6-8eca29cb3b89; https://github.com/features/copilot; https://code-as-policies.github.io/;
https://www.tableau.com/blog/ask-data-simplifying-analytics-natural-language-98655

FlashFill - Excel

Virtual Assistants

AI-assisted Programming

Robotics Control
Database Query and Visualization

https://developers.googleblog.com/2018/03/new-creative-ways-to-build-with-actions.html
https://support.microsoft.com/en-us/office/save-time-with-flash-fill-9159216a-75a0-4c11-82e6-8eca29cb3b89
https://support.microsoft.com/en-us/office/save-time-with-flash-fill-9159216a-75a0-4c11-82e6-8eca29cb3b89
https://github.com/features/copilot
https://code-as-policies.github.io/
https://www.tableau.com/blog/ask-data-simplifying-analytics-natural-language-98655

Before we start…

6

Preliminaries
• Assume basic knowledge on terms in NLP and related to LLMs
• E.g., BERT, GPT, prompting, autoregressive, retrieval, etc

• Mixing of terms
• Foundation Models ≈	LM ≈ LLM
• Code LM/LLM: Language models that have seen code during training

• Code and Math LMs
• They are deeply connected as

• Both are formal languages;
• Both require symbolic reasoning

• This lecture mostly focuses on code LMs but many methods apply for math
LMs as well

7

Outline
• A brief history of code LMs
• Data collection, filtering and tokenization
• Training of code LLMs
• Decoder-only models and code infilling
• Encoder-only models;
• Encoder-decoder models;
• Reinforcement Learning

• Post-training methods for code LLMs
• Neuro-symbolic approaches
• Prompting methods for code
• Retrieval-augmented generation for code

8

A Brief History of LMs for Code

9

Key Events (2020-2021)
• Feb 2020: CodeBERT [1]

• First attempt -- 16 months after original BERT paper
• 125M parameters

• May 2020: GPT-3 [2]
• People find that GPT-3 has some coding abilities
• Though it is not specifically trained on code

• Jun 2021: GitHub Copilot
• Revolutionary performance
• Multi-line, whole function completion for the first time

• Jul 2021: Codex [3]
• First 10B+ model trained specifically for code
• Hero behind GitHub Copilot

10

[1] Feng et al. (2020), “CodeBERT: A Pre-Trained Model for Programming and Natural Languages.”
[2] Brown et al. (2020), “Language Models are Few-Shot Learners.”
[3] Chen et al. (2021), “Evaluating Large Language Models Trained on Code.”

Key Events (2022)
• Feb 2022: AlphaCode [1]

• Claims 54.3% rankings in competitions with human participants
• Up to 41B, model not released nor publicly accessible

• Mar 2022: CodeGen [2]
• Open-source 10B+ code LM
• Later found that the model is severely under-trained (later CodeGen2)

• Apr 2022: PaLM [3]
• PaLM-Coder is a 540B code model
• The models are also severely under-trained (later PaLM-2)

• Nov 2022: The Stack [5]
• 3TB of permissively licensed code data
• Foundational data work for many code LMs in the future

11

[1] Li et al. (2022), “Competition-Level Code Generation with AlphaCode.”
[2] Nijkamp et al. (2022), “CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis.”
[3] Chowdhery et al. (2022), “PaLM: Scaling Language Modeling with Pathways.”
[4] Kocetkov et al. (2022), “The Stack: 3 TB of permissively licensed source code.”

Key Events (2023)
• Feb 2023: LLaMA [1]

• Trained with more data (1T tokens)
• Not as large but more performant than larger models

• Mar 2023: GPT-4 [2]
• State-of-the-art in every aspect, coding included

• May 2023: StarCoder [3]
• SoTA in open-source, matches Codex-12B in performance
• Trained on the Stack

• Aug 2023: CodeLLaMA [4]
• Shortly after the release of LLaMA 2 in Jul 2023
• Continued training of LLaMA 2 on code

• Dec 2023: Gemini [5] and AlphaCode 2 [6]
• AlphaCode 2 scores 85th percentile on codeforces

12

[1] Touvron et al. (2023), “LLaMA: Open and Efficient Foundation Language Models.”
[2] OpenAI. (2022), “GPT-4 Technical Report.”
[3] BigCode. (2022), “StarCoder: May the source be with you!”
[4] Rozière et al. (2023), “Code Llama: Open Foundation Models for Code.”
[5] Gemini Team (2023), “Gemini: a family of highly capable multimodal models.”
[6] AlphaCode Team (2023), “AlphaCode 2 Technical Report.”

Entering 2024…
• Feb 2024: StarCoder 2 and Stack v2 [1]
• Add more data (notebooks, PRs, Code docs…)
• Improved performance (StarCoder2-15B rivals CodeLLaMA-34B)

• Mar 2024: Devin
• Coding agent
• ”First AI software engineer”

13

[1] Lozhkov et al. (2023), “StarCoder 2 and The Stack v2: The Next Generation.”
[2] Cognition AI. (2022), “https://www.cognition-labs.com/introducing-devin.”

Data Collection, Filtering and
Tokenization

14

Code Data Collection and Filtering
• Data Sources:
• Mostly GitHub and similar platforms;
• More recently:

• Kaggle Notebooks
• Software Documentation
• Commits, issues, pull requests

• Quality Filtering (take [1] as an example):
• GitHub stars >= 5
• 1% <= Comment-to-code ratio <= 80%

• License:
• Only permissive licensed open-source repo may be used;
• E.g., MIT, Apache 2.0

15 [1] Ben Allal et al. (2023), “SantaCoder: Don’t Reach for the Stars!”

Deduplication and De-contamination

• Deduplication:
• Remove (near-)duplicated files from the training data;
• Why: repeated training data can significantly hurt the performance [1]

• Decontamination:
• Remove the files that contain solutions to benchmarks used for evaluation;
• Why: better measure generalization ability of trained LMs

• Methods:
• Exact match
• Near-deduplication

16
[1] Hernandez et al. (2023), “Scaling laws and interpretability of learning from repeated data.”
[2] Ben Allal et al. (2023), “SantaCoder: Don’t Reach for the Stars!”

Tokenization for Code LM (1)
• Tokenization for LMs

• Tokenization is a big deal for coding task

17

Tokenization for Code LM (2)
• Tokenization is a big deal for coding task
• Code looks very similar but also very different than natural language:
• Similar: semantic meaning of variable/function/class names

• E.g., ”is_correct”, “AttentionLayer”, “compute_perplexity”
• Different: Whitespace characters, punctuation, indentations

• E.g., “df.shape[1]”, “def f(x):\n\tif x>0:\n\t\treturn x\n\telse:\n\t\treturn x+1”

• Trade-off between:
• Vocabulary size
• # tokens needed to encode the same sequence
• Generalization ability for different tasks

18

Tokenization for Code LM (3)
• Trade-off between:
• Vocabulary size
• # tokens needed to encode the same sequence
• Generalization ability for different tasks à downstream performance

19
[1] Chirkova and Troshin (2023), “CodeBPE: Investigating Subtokenization Options for Large Language Model Pretraining on Source Code.”

Training of Code LLMs

20

Decoder-only (GPT) Models
• Model architecture and pretraining objectives:
• Mostly follow those of general-purpose LLMs, e.g., Codex follows the GPT-3

• Multi-stage training:
• Some models are based off a general-purpose LM
• E.g., [1] CodeGen-NLàCodeGen-MultiàCodeGen-Mono
• E.g., [2] LLaMA 2àCodeLLaMA

21
[1] Nijkamp et al. (2023), “CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis.”
[2] Rozière et al. (2023), “Code Llama: Open Foundation Models for Code.”

Code Infilling: Fill in the middle
• Infilling task:
• <prefix>, <suffix> à <middle>

• Trained via data augmentation [1]:
• Preprocessing:

• Special tokens <IF>
• <prefix>, <middle>, <suffix>
• <prefix>,<IF>, <suffix>,<IF>, <middle>

• Mixing with original data
• Training with normal autoregressive

objectives

22
[1] Bavarian et al. (2022), “Efficient Training of Language Models to Fill in the Middle.”
[2] Fried et al. (2022), “InCoder: A Generative Model for Code Infilling and Synthesis.”

A use case of infilling [2]

Encoder (BERT) Models for Code (1)

• Aka code representation learning
• Code is multi-modal and it’s usually automatic to obtain other

modalities
• Other modalities of code may better capture the semantics of code

23
[1] Wang et al. (2022), “CODE-MVP: Learning to Represent Source Code from Multiple Views with Contrastive Pre-Training.”

Encoder (BERT) Models for Code (2)

• Code is multi-modal
• Natural language;
• Surface form;
• Control flow graph;
• Abstract-syntax-tree (AST);
• Data flow graph;
• Dependency graph;
• Compiled machine code;
• …

• General idea: jointly encode other modalities with surface form

24

Using Data Flow Graph

[1] Guo et al. (2021), “GraphCodeBert: Pre-training Code Representations with Data FLow.”

Encoder-Decoder (BART/T5) Models for Code

• A mixture of classification and generation tasks for code are typically
used during pretraining
• Researchers get very creative in proposing new pretraining tasks

• E.g., CodeT5 [1]

25
[1] Wang et al. (2021), “CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code
Understanding and Generation.”

Reinforcement Learning (1)
• Code generation is a natural task to apply RL as we can automatically

obtain feedback from computers:
• Pass/fail a parser;
• Pass/fail compilation;
• With/without runtime error;
• Pass/fail test cases

• Examples:
• CodeRL [1] (offline actor-critic)
• RLTF [2] (online w/ feedback from compiler)

26

Rewards used for CodeRL

[1] Le et al. (2021), “CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning.”
[2] Liu et al. (2023), “RLTF: Reinforcement Learning from Unit Test Feedback.”

Reinforcement Learning (2)
• Benefits of using RL:
• Not limited to learning from a single solution from the dataset;
• Release the dependency for annotated solutions;
• Able to directly incorporate fine-grained preferences as reward function;

• Limitations:
• Insufficient test cases may lead to false positives [1]
• Rewards are typically sparse and underspecified [2];

• Especially if we start with a weaker model
• It usually involves exploration (sampling) with LMs, which are expensive

27
[1] Smith et al. (2015), “Is the Cure Worse Than the Disease? Overfitting in Automated Program Repair.”
[2] Agarwal et al. (2019), “Learning to Generalize from Sparse and Underspecified Rewards.”

Post-Training Methods for Code LLMs

28

Neuro-Symbolic Approaches (1): Incorporating Code Execution

• In addition to providing RL learning signal at training time
• Execution information can also help improve models at test time
• Methods:
• Sampling + filtering (codex [1])

• Sampling solutions then filter out those fail to pass a small subset of test cases

29
[1] Chen et al. (2021), “Evaluating Large Language Models Trained on Code.”

Codex-12B on APPs. Filtered Pass@k is significantly better

Neuro-Symbolic Approaches (1): Incorporating Code Execution

• Methods:
• Sampling + filtering (codex [1])
• Sampling + filtering + clustering (AlphaCode [2])

• Sample lots of diversified program candidates (i.e., up to 1M)
• Filter using open test cases
• Diversify the picked candidates by clustering and selecting from different clusters

30

[1] Chen et al. (2021), “Evaluating Large Language Models Trained on Code.”
[2] Li et al. (2022), “Competition-Level Code Generation with AlphaCode.”

Neuro-Symbolic Approaches (1): Incorporating Code Execution

• Methods:
• Sampling + filtering (codex [1])
• Sampling + filtering + clustering (AlphaCode [2])
• Sampling + verification + voting (LEVER [3])

• Train a verifier to verify the program with its execution results
• Aggregate the probability from programs that reach the same execution results

31

[1] Chen et al. (2021), “Evaluating Large Language Models Trained on Code.”
[2] Li et al. (2022), “Competition-Level Code Generation with AlphaCode.”
[3] Ni et al. (2023), “LEVER: Learning to Verify Language-to-Code Generation using Execution.”

Neuro-Symbolic Approaches (2): Constraint Decoding

• How does code completion work before LLMs?
• Remember: programs are in formal languages, which means that they are

regulated by strict grammar;
• Completion Engine (CE): tells you the valid next tokens w/ static analysis 👇

• Sounds a lot like a language model, right?
• But it is a symbolic process

• Combining LM with CE [1]:
• Filter out next token from the LM that
 are not approved by CE
• Best of both worlds!

32
[1] Poesia et al. (2022), “Synchromesh: Reliable code generation from pre-trained language models.”

Neuro-Symbolic Approaches (3): Planning and Search

• Programs are compositional by design
• Human programmers typically decompose the problem into smaller parts and

write functions to solve each of them à Planning + Implementation
• Given the components (e.g., individual functions), we can use a solver to find

out if they are sufficient in completing the task à Search

• Example 1: Parsel [1]

33
[1] Zelikman et al. (2022), “Parsel : Algorithmic Reasoning with Language Models by Composing Decomposition.”

Neuro-Symbolic Approaches (3): Planning and Search

• Programs are compositional by design
• Human programmers typically decompose the problem into smaller parts and

write functions to solve each of them à Planning + Implementation
• Given the components (e.g., individual functions), we can use a solver to find

out if they are sufficient in completing the task à Search

• Example 2: SatLM [1]

34
[1] Xi et al. (2023), “SATLM: Satisfiability-Aided Language Models Using Declarative Prompting.”

Prompting Methods using Code for LLMs
• Chain-of-thought (CoT) prompting [1]
• Explicitly write the reasoning process as natural

language

• Program-of-thought (PoT) prompting [2] and
Program-aided LM (PAL) [3]
• Explicitly write the reasoning process as a program
• Use program execution to obtain the final answer

• Works well with math and other symbolic
reasoning tasks
• Also closely related to tool-use of LLMs

35

[1] Wei et al. (2022), “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.”
[2] Chen et al. (2022), “Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks.”
[3] Gao et al. (2022), “PAL: Program-aided Language Models.”

Retrieval Augmented Generation for Code

• Retrieval-augmented generation (RAG)
• Retrieves relevant pieces of information from some knowledge base and

include them in the prompt

• When programmers code, we look at:
• Current file (e.g., defined variables, function, classes)
• Documentation of external libraries
• Definitions of imported functions and classes
• Github, StackOverflow, geeksforgeeks…

• We should give such information to the LLMs as well!

36

“DocPrompting” [1]

“Repo-level Prompt Generator” [2]

[1] Zhou et al. (2022), “DocPrompting: Generating Code by Retrieving the Docs.”
[2] Shrivastava et al. (2023), “Repository-Level Prompt Generation for Large Language Models of Code.”
[3] Parvez et al. (2021), “Retrieval Augmented Code Generation and Summarization.”

“REDCODER” [3]

Summary
• A brief history of code LMs
• Data collection, filtering and tokenization
• Training of code LLMs
• Decoder-only models and code infilling
• Encoder-only models;
• Encoder-decoder models;
• Reinforcement Learning

• Post-training methods for code LLMs
• Neuro-symbolic approaches
• Prompting methods for code
• Retrieval-augmented generation for code

37

Extended Readings
• Interdisciplinary applications

• Code as Policies: Language Model Programs for Embodied Control (2023)
• Large Language Models for Compiler Optimization (2023)

• Self-Improvement with code LLMs
• STaR: Bootstrapping Reasoning With Reasoning (2022)
• CodeT: Code Generation with Generated Tests (2022)
• Teaching Large Language Models to Self-Debug (2023)
• DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines (2023)

• More ways to learn a code LLM
• Show Your Work: Scratchpads for Intermediate Computation with Language Models (2021)
• Learning Math Reasoning from Self-Sampled Correct and Partially-Correct Solutions (2022)

38

Questions?

39

Hope you enjoyed the lecture!

