
Lecture 11: Pre-training and large language
models (LLMs)

COMP 3361 Natural Language Processing

Spring 2024

Many materials from COS484@Princeton and CSE447@UW (Liwei Jiang) with special thanks!

Lecture 3: Tokenization

Announcements

• Again, get started on assignment 2 ASAP!
• Join #assignment-2 Slack channel for discussion
• Course reading materials

Lecture 3: Tokenization

Lecture plan

• Traditional to modern NLP: recap
• Pretraining overview
• BERT pretraining
• T5 pretraining
• GPT pretraining

Natural Language Processing - CSE 517 / CSE 447

Traditional to modern NLP: training paradigm

N-gram language models Neural language models: BERT, GPT

Traditional models: Naive Bayes Neural models: Transformers

Static embeddings: word2vec Contextual embeddings: BERT, GPT

Traditional learning paradigm New learning paradigm: Pretrain, ICL

Natural Language Processing - CSE 517 / CSE 447

Traditional learning paradigm

• Supervised training/fine-tuning only, NO pre-training
• Collect (x, y) task training pairs
• Randomly initialize your models f(x) (e.g., vanilla Transformers)
• Train f(x) on (x, y) pairs

Then you get a trained Transformers ONLY for sentiment analysis
The model can be: NB, LR, RNNs, LSTM too

Natural Language Processing - CSE 517 / CSE 447

Modern learning paradigm

• Pre-training + supervised training/fine-tuning
• First train Transformer using a lot of general text using unsupervised

learning. This is called pretraining.
• Then train the pretrained Transformer for a specific task using supervised

learning. This is called finetuning.

Pretrained Transformers

Fine-tuned Task Transformers

Natural Language Processing - CSE 517 / CSE 447

Evolution tree of pretrained LMs

https://github.com/Mooler0410/LLMsPracticalGuide
https://mistral.ai/news/mistral-large/

Open-sourced

Close-sourced

~300 million

~200 billion

Model size
(# of parameters)

~1000 times larger

https://github.com/Mooler0410/LLMsPracticalGuide
https://mistral.ai/news/mistral-large/

Natural Language Processing - CSE 517 / CSE 447

Latest learning paradigm with LLMs

• Pre-training + prompting/in-context learning (no training this
step)
• First train a large (>7~175B) Transformer using a lot of general text using

unsupervised learning. This is called large language model pretraining.

Natural Language Processing - CSE 517 / CSE 447

Latest learning paradigm with LLMs

• Pre-training + prompting/in-context learning (no training this
step)
• First train a large (>7~175B) Transformer using a lot of general text using

unsupervised learning. This is called large language model pretraining.
• Then directly use the pretrained large Transformer (no further finetuning/

training) for any different task given only a natural language description of
the task or a few task (x, y) examples. This is called prompting/in-context
learning.

Zero-shot prompting Few-shot prompting/in-context learning

Natural Language Processing - CSE 517 / CSE 447

Example: Prompting ChatGPT for sentiment analysis

• Pre-training + prompting/in-context learning (no training this
step)

Already pretrained ChatGPT
No further training for sentiment analysis

Just prompting to conduct the task!

Natural Language Processing - CSE 517 / CSE 447

Pretraining: training objectives?

• During pretraining, we have a large text corpus (no task labels)
• Key question: what labels or objectives used to train the vanilla

Transformers?

Natural Language Processing - CSE 517 / CSE 447

Pretraining: training objectives?

• During pretraining, we have a large text corpus (no task labels)
• Key question: what labels or objectives used to train the vanilla

Transformers?

Training
labels/objectives?

Pretraining Transformers

Lecture 3: Tokenization

Pretraining: training objectives?

Masked token prediction

BERT (Encoder-only)

Devlin et al., 2018

https://github.com/manueldeprada/Pretraining-T5-PyTorch-Lightning

T5 (Encoder-decoder)

Raffel et al., 2019

Denoising span-mask prediction Next token prediction

Decoder-only

Advantages of pre-training

• Leveraging rich underlying information from abundant raw texts.
• Reducing the reliance of task-specific labeled data that is difficult or

costly to obtain.
• Initializing model parameters for more generalizable NLP

applications.
• Saving training cost by providing a reusable model checkpoints.
• Providing robust representation of language contexts.

Lecture 6: Pre-training

• E.g., BERT, RoBERTa, DeBERTa, …

• Autoencoder model

• Masked language modeling

Encoder

Encoder-Decoder
• E.g., T5, BART, …

• seq2seq model

Decoder

• E.g., GPT, GPT2, GPT3, …

• Autoregressive model

• Left-to-right language modeling

Pre-training architectures

Lecture 6: Pre-training

Encoder • Bidirectional; can condition
on the future context

Decoder
• Language modeling; can only

condition on the past context

Encoder-Decoder • Map two sequences of
different length together

Pre-training architectures

BERT: Bidirectional Encoder Representations
from Transformers

• It is a fine-tuning approach based on a deep bidirectional
Transformer encoder instead of a Transformer decoder

• The key: learn representations based on bidirectional contexts

(Released in 2018/10)

(Devlin et al, 2019): BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

• Two new pre-training objectives:

• Masked language modeling (MLM)
• Next sentence prediction (NSP) - Later work

shows that NSP hurts performance though..

Example #1: we went to the river bank.
Example #2: I need to go to bank to make a deposit.

Masked Language Modeling (MLM)

• Q: Why we can’t do language modeling with bidirectional models?

• Solution: Mask out k% of the input words, and then predict the masked words

the man went to [MASK] to buy a [MASK] of milk

store gallon k = 15% in practice

Masked Language Modeling (MLM)

http://jalammar.github.io/illustrated-bert/

MLM: 80-10-10 corruption
For the 15% predicted words,

• 80% of the time, they replace it with [MASK] token

went to the store went to the [MASK]⟶

• 10% of the time, they replace it with a random word in the vocabulary

went to the store went to the running⟶

• 10% of the time, they keep it unchanged

went to the store went to the store⟶

Why? Because [MASK] tokens are never seen during fine-tuning
(See Table 8 of the paper for an ablation study)

Next Sentence Prediction (NSP)

• Motivation: many NLP downstream tasks require understanding the relationship
between two sentences (natural language inference, paraphrase detection, QA)

• NSP is designed to reduce the gap between pre-training and fine-tuning

They sample two contiguous
segments for 50% of the
time and another random
segment from the corpus for
50% of the time

[CLS]: a special token
always at the beginning

[SEP]: a special token used
to separate two segments

This actually hurts model learning based on later work!

BERT pre-training

• Vocabulary size: 30,000 wordpieces (common sub-word units) (Wu et al., 2016)

(Image: Stanford
CS224N)

• Input embeddings:

Separate two segments

Special token added to the beginning of each
input sequence Special token to separate sentence A/B

BERT pre-training

• BERT-base: 12 layers, 768 hidden size, 12 attention
heads, 110M parameters

• BERT-large: 24 layers, 1024 hidden size, 16 attention
heads, 340M parameters

• Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B)

• Max sequence size: 512 wordpiece tokens (roughly 256
and 256 for two non-contiguous sequences)

• Trained for 1M steps, batch size 128k

BERT pre-training

• MLM and NSP are trained together

• [CLS] is pre-trained for NSP

• Other token representations are trained

for MLM

Pretraining / fine-tuning
“Pre-train” a model on a large dataset for task X, then “fine-tune” it on a dataset for task Y

“Fine-tuning is the process of taking the network
learned by these pre-trained models, and further
training the model, often via an added neural net
classifier that takes the top layer of the network as
input, to perform some downstream task.”

Fine-tuning is a training
process and takes
gradient descent steps!

BERT fine-tuning
“Pretrain once, finetune many times.”

sentence-level tasks

• QQP: Quora Question Pairs (detect paraphrase questions)
• QNLI: natural language inference over question answering data
• SST-2: sentiment analysis

BERT fine-tuning
“Pretrain once, finetune many times.”

token-level tasks

Example: sentiment classification

We just need to introduce parameters for
classification tasks (C = # of classes, h = hidden size)!

C × h

All the parameters will be learned
together (original BERT parameters
+ new classifier parameters)

P(y = k) = softmaxk(Woh[CLS])

Wo ∈ ℝC×h

Example: named entity recognition (NER)
We just need to introduce parameters for
classification tasks (C = # of classes, h = hidden size)!

C × h

P(yi = k) = softmaxk(Wohi)

Wo ∈ ℝC×h

Experimental results: GLUE

Experimental results: SQuAD

SQuAD = Stanford Question Answering dataset

Ablation study: pre-training tasks

• MLM >> left-to-right LMs

• NSP improves on some tasks

• Note: later work (Joshi et al.,
2020; Liu et al., 2019) argued
that NSP is not useful

Ablation study: model sizes

The bigger, the better!

layers
hidden  

size
of

heads

Encoder: other variations of BERT

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training34

• ALBERT [Lan et al., 2020]: incorporates two parameter reduction techniques that
lift the major obstacles in scaling pre-trained models

• DeBERTa [He et al., 2021]: decoding-enhanced BERT with disentangled attention
• SpanBERT [Joshi et al., 2019]: masking contiguous spans of words makes a

harder, more useful pre-training task
• ELECTRA [Clark et al., 2020]: corrupts texts by replacing some tokens with

plausible alternatives sampled from a small generator network, then train a
discriminative model that predicts whether each token in the corrupted input was replaced
by a generator sample or not.

• DistilBERT [Sanh et al., 2019]: distilled version of BERT that’s 40% smaller
• TinyBERT [Jiao et al., 2019]: distill BERT for both pre-training & fine-tuning
• …

https://arxiv.org/pdf/1909.11942.pdf
https://arxiv.org/abs/1907.10529
https://arxiv.org/pdf/2003.10555.pdf
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1909.10351

Encoder: pros & cons

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training35

• Consider both left and right context
• Capture intricate contextual relationships

• Not good at generating open-text from left-to-
right, one token at a time

Iroh goes to [M] tasty tea

make/brew/craft

Encoder

Iroh goes to make tasty tea

goes to make tasty tea END

Decoder

Pre-training architectures

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training36

Encoder • Bidirectional; can condition
on the future context

Decoder
• Language modeling; can only

condition on the past context

Encoder-Decoder • Map two sequences of
different length together

Text-to-text models: the best of both worlds

• So bar, encoder-only models (e.g., BERT) enjoy the benefits of bidirectionality but they
can’t be used to generate text

• Decoder-only models (e.g., GPT) can do generation but they are left-to-right LMs..

• Text-to-text models combine the best of both worlds!

(Raffel et al., 2020): Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

T5 = Text-to-Text Transfer Transformer

Encoder-decoder: architecture

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training38

• Moving towards open-text generation…
• Encoder builds a representation of the

source and gives it to the decoder
• Decoder uses the source representation to

generate the target sentence
• The encoder portion benefits from

bidirectional context; the decoder
portion is used to train the whole model
through language modeling

w1, . . . , wt1

wt1+1, . . . , wt2

wt1+2, . . .

h1, . . . , ht1 = Encoder(w1, . . . , wt1)
ht1+1, . . . , ht2 = Decoder(wt1+1, . . . , wt2, h1, . . . , ht1)
yi ∼ Ahi + b, i > t

[Raffel et al., 2018]

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf

Encoder-decoder: machine translation example

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training39

[Lena Viota Blog]

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Encoder-decoder: training objective

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training40

• T5 [Raffel et al., 2018]
• Text span corruption (denoising): Replace

different-length spans from the input with
unique placeholders (e.g., <extra_id_0>);
decode out the masked spans.
• Done during text preprocessing:

training uses language modeling
objective at the decoder side

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training41

• Encoder-decoders works better than decoders
• Span corruption (denoising) objective works better than language modeling

Encoder-decoder: T5 [Raffel et al., 2018]

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training42

[Raffel et al., 2018]

• Text-to-Text: convert NLP tasks into input/
output text sequences

• Dataset: Colossal Clean Crawled Corpus (C4),
750G text data!

• Various Sized Models:
• Base (222M)
• Small (60M)
• Large (770M)
• 3B
• 11B

• Achieved SOTA with scaling & purity of data

[Google Blog]

Encoder-decoder: T5

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf
https://blog.research.google/2020/02/exploring-transfer-learning-with-t5.html

Encoder-decoder: pros & cons

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training43

• A nice middle ground between leveraging bidirectional
contexts and open-text generation

• Good for multi-task fine-tuning

• Require more text wrangling
• Harder to train
• Less flexible for natural language generation

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training44

Encoder • Bidirectional; can condition
on the future context

Decoder
• Language modeling; can only

condition on the past context

Encoder-Decoder • Map two sequences of
different length together

Pre-training architectures

Decoder: training objective

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training45

• Many most famous generative LLMs are decoder-
only
• e.g., GPT1/2/3/4, Llama1/2

• Language modeling! Natural to be used for
open-text generation

• Conditional LM:

• Conditioned on a source context to generate
from left-to-right

• Can be fine-tuned for natural language
generation (NLG) tasks, e.g., dialogue,
summarization.

p(wt |w1, . . . , wt−1, x)
x

w1, w2, w3, w4, w5

w2, w3, w4, w5, w6

h1, . . . , h5

A, b

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training46

• Customizing the pre-trained model for
downstream tasks:
• Add a linear layer on top of the last hidden

layer to make it a classifier!
• During fine-tuning, trained the randomly

initialized linear layer, along with all
parameters in the neural net.

Linear

h1, . . . , h5

A, b

or

Is Santa Claus real figure?

Decoder: training objective

Decoder: GPT

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training47

Generative Pre-trained Transformer [Radford et al., 2018]

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

How to use these pre-trained models?

How to pick a proper architecture for a given task?

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training49

• Right now decoder-only models seem to dominant the field at the
moment
• e.g., GPT1/2/3/4, Mistral, Llama1/2

• T5 (seq2seq) works well with multi-tasking
• Picking the best model architecture remains an open research

question!

