

COMP 3361 Natural Language Processing

Lecture 11: Pre-training and large language models (LLMs)

Many materials from COS484@Princeton and CSE447@UW (Liwei Jiang) with special thanks!

Spring 2024

Announcements

- Again, get started on assignment 2 ASAP!
 - Join #assignment-2 Slack channel for discussion
 - Course reading materials

nt 2 ASAP! Innel for discussion

Lecture plan

- Traditional to modern NLP: recap
- Pretraining overview
- BERT pretraining
- T5 pretraining
- GPT pretraining

Traditional to modern NLP: training paradigm

N-gram language models

Traditional models: Naive Bayes

Static embeddings: word2vec

Traditional learning paradigm

Neural language models: BERT, GPT

Neural models: Transformers

Contextual embeddings: BERT, GPT

New learning paradigm: Pretrain, ICL

Traditional learning paradigm

Supervised training/fine-tuning only, NO pre-training

- Collect (x, y) task training pairs
- Randomly initialize your models f(x) (e.g., vanilla Transformers)
- Train f(x) on (x, y) pairs

Then you get a trained Transformers **ONLY** for sentiment analysis The model can be: NB, LR, RNNs, LSTM too

Modern learning paradigm

- Pre-training + supervised training/fine-tuning
 - First train Transformer using a lot of general text using unsupervised learning. This is called **pretraining**.
 - Then train the pretrained Transformer for a specific task using supervised learning. This is called **finetuning**.

https://mistral.ai/news/mistral-large/

Evolution tree of pretrained LMs

Latest learning paradigm with LLMs

- step)

• Pre-training + prompting/in-context learning (no training this

• First train a large (>7~175B) Transformer using a lot of general text using unsupervised learning. This is called large language model pretraining.

Latest learning paradigm with LLMs

- step)

 - learning.

Zero-shot prompting

• Pre-training + prompting/in-context learning (no training this

• First train a large (>7~175B) Transformer using a lot of general text using unsupervised learning. This is called large language model pretraining. Then directly use the pretrained large Transformer (no further finetuning/ training) for any different task given only a natural language description of the task or a few task (x, y) examples. This is called **prompting/in-context**

	Translate English to French:	← task description
	sea otter => loutre de mer	← examples
	peppermint => menthe poivrée	<>
	plush girafe => girafe peluche	<
	cheese =>	← prompt

Few-shot prompting/in-context learning

Example: Prompting ChatGPT for sentiment analysis

 Pre-training + prompting/in-c step)

Already pretrained ChatGPT No further training for sentiment analysis Just prompting to conduct the task!

Pre-training + prompting/in-context learning (no training this

what is the sentiment of "predictable with no fun"? just tell me: positive, negative, or

Pretraining: training objectives?

• During pretraining, we have a large text corpus (**no task labels**)

• Key question: what labels or objectives used to train the vanilla **Transformers?**

10000

me up.

It said, 'Please... draw me a sheep.'

shipwrecked sailor on a raft in the middle of the ocean. So you can imagine my surprise at sunrise when an odd little voice woke

Pretraining: training objectives?

• During pretraining, we have a large text corpus (**no task labels**) • Key question: what labels or objectives used to train the vanilla

Transformers?

Training labels/objectives?

Pretraining Transformers

Pretraining: training objectives?

BERT (Encoder-only)

Devlin et al., 2018

T5 (Encoder-decoder) Raffel et al., 2019

The cabs ____ the same rates as those ____ by horse-drawn cabs and were ____ quite popular, ____ the Prince of Wales (the ____ King Edward VII) travelled in ____. The cabs quickly ____ known as "hummingbirds" for ____ noise made by their motors and their distinctive black and ____ livery. Passengers _____ the interior fittings were ____ when compared to ____ cabs but there ____ some complaints ____ the ____ lighting made them too ____ to those outside ____.

charged, used, initially, even, future, became, the, yellow, reported, that, luxurious, horse-drawn, were that, internal, conspicuous, cab

Thank you for inviting me to
Inputs
Thank you <x> me to your pa</x>
Targets
<x> for inviting <y> last <z></z></y></x>

Masked token prediction

Denoising span-mask prediction

GPT - 4

Decoder-only

Next token prediction

- costly to obtain.
- Initializing model parameters for more generalizable NLP applications.
- Saving training cost by providing a reusable model checkpoints.
- Providing robust representation of language contexts.

Advantages of pre-training

• Leveraging rich underlying information from abundant raw texts. • Reducing the reliance of task-specific labeled data that is difficult or

Pre-training architectures

Encoder-**Decoder**

Decoder

- Autoencoder model
- Masked language modeling
- E.g., T5, BART, ...
- seq2seq model
- E.g., GPT, GPT2, GPT3, ...
- Autoregressive model
- Left-to-right language modeling

• E.g., BERT, RoBERTa, DeBERTa, ...

Pre-training architectures

Encoder

Encoder-Decoder

Decoder

 Bidirectional; can condition on the future context

 Map two sequences of different length together

- Language modeling; can only condition on the past context

BERT: Bidirectional Encoder Representations (Released in 2018/10) from Transformers

- It is a fine-tuning approach based on a deep bidirectional Transformer encoder instead of a Transformer decoder
- The key: learn representations based on **bidirectional contexts**

- Two new pre-training objectives:
 - Masked language modeling (MLM)
 - Next sentence prediction (NSP) Later work shows that NSP hurts performance though...

- Example #1: we went to the river bank.
- Example #2: I need to go to bank to make a deposit.

Masked Language Modeling (MLM)

Q: Why we can't do language modeling with bidirectional models?

S

the man went to [M

• Solution: Mask out k% of the input words, and then predict the masked words

Masked Language Modeling (MLM)

- Aardvark

http://jalammar.github.io/illustrated-bert/

MLM: 80-10-10 corruption

For the 15% predicted words,

- 80% of the time, they replace it with [MASK] token
- 10% of the time, they replace it with a random word in the vocabulary
- 10% of the time, they keep it unchanged

went to the store \longrightarrow went to the [MASK]

went to the store \longrightarrow went to the running

went to the store \longrightarrow went to the store

Why? Because [MASK] tokens are never seen during fine-tuning (See Table 8 of the paper for an ablation study)

Next Sentence Prediction (NSP)

- NSP is designed to reduce the gap between pre-training and fine-tuning

• Motivation: many NLP downstream tasks require understanding the relationship between two sentences (natural language inference, paraphrase detection, QA)

[SEP]: a special token used to separate two segments

They sample two contiguous segments for 50% of the time and another random segment from the corpus for 50% of the time

This actually hurts model learning based on later work!

BERT pre-training

• Vocabulary size: 30,000 wordpieces (common sub-word units) (Wu et al., 2016)

Special token added to the beginning of each • Input embeddings:

BERT pre-training

- BERT-base: 12 layers, 768 hidden size, 12 attention heads, 110M parameters
- BERT-large: 24 layers, 1024 hidden size, 16 attention heads, 340M parameters

- Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B)
- Max sequence size: 512 wordpiece tokens (roughly 256 and 256 for two non-contiguous sequences)
- Trained for 1M steps, batch size 128k

BERT pre-training

Pre-training

- MLM and NSP are trained together
- [CLS] is pre-trained for NSP
- Other token representations are trained for MLM

Pretraining / fine-tuning

"Pre-train" a model on a large dataset for task X, then "fine-tune" it on a dataset for task Y

"Fine-tuning is the process of taking the network learned by these pre-trained models, and further training the model, often via an added neural net classifier that takes the top layer of the network as input, to perform some downstream task."

Fine-Tuning

Fine-tuning is a training process and takes gradient descent steps!

BERT fine-tuning

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

- **QQP:** Quora Question Pairs (detect paraphrase questions) **QNLI:** natural language inference over question answering data **SST-2:** sentiment analysis

- "Pretrain once, finetune many times."
 - sentence-level tasks

(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT fine-tuning

Start/End Span

SQuAD v1.1

- "Pretrain once, finetune many times."
 - token-level tasks

CoNLL-2003 NER

Example: sentiment classification

classification tasks (C = # of classes, h = hidden size)!

$$P(y = k) = softmax_k(\mathbf{W}_o\mathbf{h}_{[CLS]})$$
$$\mathbf{W}_o \in \mathbb{R}^{C \times h}$$

All the parameters will be learned together (original BERT parameters + new classifier parameters)

Example: named entity recognition (NER)

Experimental results: GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avera
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.0
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.

Experimental results: SQuAD

System	D	ev	Test		
	EM	F1	EM]	
Top Leaderboard Systems	s (Dec	10th,	2018)		
Human	-	-	82.3	9	
#1 Ensemble - nlnet	-	-	86.0	9	
#2 Ensemble - QANet	-	-	84.5	9	
Publishe	d				
BiDAF+ELMo (Single)	-	85.6	-	8	
R.M. Reader (Ensemble)	81.2	87.9	82.3	8	
Ours					
BERT _{BASE} (Single)	80.8	88.5	-		
BERT _{LARGE} (Single)	84.1	90.9	-		
BERT _{LARGE} (Ensemble)	85.8	91.8	-		
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	9	
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	9	

SQuAD = Stanford Question Answering dataset

Ablation study: pre-training tasks

Effect of Pre-training Task

BERT-Base No Next Sent Left-to-Right & No Next Sent Left-to-Right & No Next Sent + BiLSTM

- MLM >> left-to-right LMs
- NSP improves on some tasks
- Note: later work (Joshi et al., 2020; Liu et al., 2019) argued that NSP is not useful

Ablation study: model sizes

# la	ayers	hidde size	en ‡ e he	# of eads /			
	Hy	perpar	ams		Dev Se	et Accura	acy
	#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2
	3	768	12	5.84	77.9	79.8	88.4
	6	768	3	5.24	80.6	82.2	90.7
	6	768	12	4.68	81.9	84.8	91.3
	12	768	12	3.99	84.4	86.7	92.9
	12	1024	16	3.54	85.7	86.9	93.3
	24	1024	16	3.23	86.6	87.8	93.7

The bigger, the better!

Encoder: other variations of BERT

- ALBERT [Lan et al., 2020]: incorporates two parameter reduction techniques that lift the major obstacles in scaling pre-trained models
- **DeBERTa** [He et al., 2021]: decoding-enhanced BERT with disentangled attention • SpanBERT [Joshi et al., 2019]: masking contiguous spans of words makes a
- harder, more useful pre-training task
- ELECTRA [Clark et al., 2020]: corrupts texts by replacing some tokens with plausible alternatives sampled from a small generator network, then train a discriminative model that predicts whether each token in the corrupted input was replaced by a generator sample or not.
- DistilBERT [Sanh et al., 2019]: distilled version of BERT that's 40% smaller • TinyBERT [Jiao et al., 2019]: distill BERT for both pre-training & fine-tuning

Encoder: pros & cons

- Consider both left and right context
- Capture intricate contextual relationships
- Not good at generating open-text from left-toright, one token at a time

Pre-training architectures

Encoder-Decoder

• Bidirectional; can condition on the future context

 Map two sequences of different length together

- Language modeling; can only condition on the past context

Text-to-text models: the best of both worlds

- can't be used to generate text
- Text-to-text models combine the best of both worlds!

So bar, encoder-only models (e.g., BERT) enjoy the benefits of bidirectionality but they

Decoder-only models (e.g., GPT) can do generation but they are left-to-right LMs.

(Raffel et al., 2020): Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Encoder-decoder: architecture

- Moving towards **open-text generation**...
- **Encoder** builds a representation of the source and gives it to the **decoder**
- **Decoder** uses the source representation to generate the target sentence
- The **encoder** portion benefits from bidirectional context; the decoder portion is used to train the whole model through language modeling

 $h_1, \ldots, h_{t_1} = \text{Encoder}(w_1, \ldots, w_{t_1})$ $h_{t_1+1}, \ldots, h_{t_2} = \text{Decoder}(w_{t_1+1}, \ldots, w_{t_2}, h_1, \ldots, h_{t_1})$ $y_i \sim Ah_i + b, i > t$ [Raffel et al., 2018]

Encoder-decoder: machine translation example

P(* |Я видел котю на мате <eos>)

previous history

[Lena Viota Blog]

Encoder-decoder: training objective

- T5 [Raffel et al., 2018]
- Text span corruption (denoising): Replace different-length spans from the input with unique placeholders (e.g., <extra_id_0>); decode out the masked spans.
 - Done during text preprocessing: training uses language modeling objective at the decoder side

Original text

Thank you for inviting me to your party last week.

Encoder-decoder:T5 [Raffel et al., 2018]

• Encoder-decoders works better than decoders • Span corruption (denoising) objective works better than language modeling

Architecture	Objective	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Encoder-decoder	Denoising	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	Denoising	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	Denoising	P	M	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	Denoising	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39
Encoder-decoder	$\mathbf{L}\mathbf{M}$	2P	M	79.56	18.59	76.02	64.29	26.27	39.17	26.86
Enc-dec, shared	$\mathbf{L}\mathbf{M}$	P	M	79.60	18.13	76.35	63.50	26.62	39.17	27.05
Enc-dec, 6 layers	$\mathbf{L}\mathbf{M}$	P	M/2	78.67	18.26	75.32	64.06	26.13	38.42	26.89
Language model	$\mathbf{L}\mathbf{M}$	P	M	73.78	17.54	53.81	56.51	25.23	34.31	25.38
Prefix LM	$\mathbf{L}\mathbf{M}$	P	M	79.68	17.84	76.87	64.86	26.28	37.51	26.76

Encoder-decoder:T5 [Raffel et al., 2018]

- Text-to-Text: convert NLP tasks into input/ output text sequences
- **Dataset:** Colossal Clean Crawled Corpus (C4), 750G text data!
- Various Sized Models:
 - Base (222M)
 - Small (60M)
 - Large (770M)
 - 3B
 - 1 B

Achieved SOTA with scaling & purity of data

[Google Blog]

Encoder-decoder: pros & cons

A nice middle ground between leveraging bidirectional contexts and open-text generation
 Good for multi-task fine-tuning

- Require more **text wrangling**
 - Harder to train
 - Less flexible for natural language generation

Pre-training architectures

Encoder-Decoder

• Bidirectional; can condition on the future context

 Map two sequences of different length together

- Language modeling; can only condition on the past context

Decoder: training objective

- Many most famous generative LLMs are decoderonly
 - e.g., GPT1/2/3/4, Llama1/2
- Language modeling! Natural to be used for open-text generation
- Conditional LM: $p(w_t | w_1, \dots, w_{t-1}, x)$
 - Conditioned on a source context *x* to generate from left-to-right
- Can be fine-tuned for **natural language** generation (NLG) tasks, e.g., dialogue, summarization.

 W_1, W_2, W_3, W_4, W_5

Decoder: training objective

- Customizing the pre-trained model for downstream tasks:
 - Add a **linear layer** on top of the last hidden layer to make it a classifier!
 - During fine-tuning, trained the randomly initialized linear layer, along with all parameters in the neural net.

Is Santa Claus real figure?

Decoder: GPT

Generative Pre-trained Transformer [Radford et al., 2018]

How to use these pre-trained models?

• Transformers ~
Q Search documentation # K
V4.27.2 V EN V 🄅 🌎 92,354
CANINE
CodeGen
ConvBERT
СРМ
CTRL
DeBERTa
DeBERTa-v2
DialoGPT
DistilBERT
DPR
ELECTRA

.

DistilBERT

All model pages distilbert 😫 Hugging Face Spaces

Overview

The DistilBERT model was proposed in the blog post Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT, and the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. DistilBERT is a small, fast, cheap and light Transformer model trained by distilling BERT base. It has 40% less parameters than bert-base-uncased, runs 60% faster while preserving over 95% of BERT's performances as measured on the GLUE language understanding benchmark.

```
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> def tokenize_function(examples):
        return tokenizer(examples["text"], padding="max_length", truncation=True)
. . .
>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
```


How to pick a proper architecture for a given task?

- Right now decoder-only models seem to dominant the field at the moment
 - e.g., GPT1/2/3/4, Mistral, Llama1/2
- T5 (seq2seq) works well with multi-tasking
- Picking the best model architecture remains an open research question!