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Lecture 3: Tokenization

Announcements

• Again, get started on assignment 2 ASAP! 
• Join #assignment-2 Slack channel for discussion 
• Course reading materials



Lecture 3: Tokenization

Lecture plan

• Traditional to modern NLP: recap 
• Pretraining overview 
• BERT pretraining 
• T5 pretraining 
• GPT pretraining
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Traditional to modern NLP: training paradigm

N-gram language models Neural language models: BERT, GPT

Traditional models: Naive Bayes Neural models: Transformers

Static embeddings: word2vec Contextual embeddings: BERT, GPT

Traditional learning paradigm New learning paradigm: Pretrain, ICL
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Traditional learning paradigm

• Supervised training/fine-tuning only, NO pre-training 
• Collect (x, y) task training pairs 
• Randomly initialize your models f(x) (e.g., vanilla Transformers) 
• Train f(x) on (x, y) pairs

Then you get a trained Transformers ONLY for sentiment analysis 
The model can be: NB, LR, RNNs, LSTM too
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Modern learning paradigm

• Pre-training + supervised training/fine-tuning 
• First train Transformer using a lot of general text using unsupervised 

learning. This is called pretraining. 
• Then train the pretrained Transformer for a specific task using supervised 

learning. This is called finetuning.

Pretrained Transformers

Fine-tuned Task Transformers
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Evolution tree of pretrained LMs 

https://github.com/Mooler0410/LLMsPracticalGuide
https://mistral.ai/news/mistral-large/ 

Open-sourced

Close-sourced

~300 million

~200 billion

Model size  
(# of parameters) 

~1000 times larger

https://github.com/Mooler0410/LLMsPracticalGuide
https://mistral.ai/news/mistral-large/
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Latest learning paradigm with LLMs

• Pre-training + prompting/in-context learning (no training this 
step) 
• First train a large (>7~175B) Transformer using a lot of general text using 

unsupervised learning. This is called large language model pretraining.
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Latest learning paradigm with LLMs

• Pre-training + prompting/in-context learning (no training this 
step) 
• First train a large (>7~175B) Transformer using a lot of general text using 

unsupervised learning. This is called large language model pretraining. 
• Then directly use the pretrained large Transformer (no further finetuning/

training) for any different task given only a natural language description of 
the task or a few task (x, y) examples. This is called prompting/in-context 
learning.

Zero-shot prompting Few-shot prompting/in-context learning
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Example: Prompting ChatGPT for sentiment analysis

• Pre-training + prompting/in-context learning (no training this 
step)

Already pretrained ChatGPT 
No further training for sentiment analysis 

Just prompting to conduct the task!
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Pretraining: training objectives?

• During pretraining, we have a large text corpus (no task labels)
• Key question: what labels or objectives used to train the vanilla 

Transformers? 
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Pretraining: training objectives?

• During pretraining, we have a large text corpus (no task labels)
• Key question: what labels or objectives used to train the vanilla 

Transformers? 

Training  
labels/objectives?

Pretraining Transformers
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Pretraining: training objectives?

Masked token prediction

BERT (Encoder-only)   

Devlin et al., 2018

https://github.com/manueldeprada/Pretraining-T5-PyTorch-Lightning

T5 (Encoder-decoder)    

Raffel et al., 2019

Denoising span-mask prediction Next token prediction

Decoder-only



Advantages of pre-training

• Leveraging rich underlying information from abundant raw texts. 
• Reducing the reliance of task-specific labeled data that is difficult or 

costly to obtain. 
• Initializing model parameters for more generalizable NLP 

applications. 
• Saving training cost by providing a reusable model checkpoints. 
• Providing robust representation of language contexts.
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• E.g., BERT, RoBERTa, DeBERTa, … 

• Autoencoder model 

• Masked language modeling

Encoder

Encoder-Decoder
• E.g., T5, BART, … 

• seq2seq model

Decoder

• E.g., GPT, GPT2, GPT3, … 

• Autoregressive model 

• Left-to-right language modeling

Pre-training architectures
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Encoder • Bidirectional; can condition 
on the future context

Decoder
• Language modeling; can only 

condition on the past context

Encoder-Decoder • Map two sequences of 
different length together

Pre-training architectures



BERT: Bidirectional Encoder Representations 
from Transformers

• It is a fine-tuning approach based on a deep bidirectional 
Transformer encoder instead of a Transformer decoder


• The key: learn representations based on bidirectional contexts 

(Released in 2018/10)

(Devlin et al, 2019): BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

• Two new pre-training objectives:

• Masked language modeling (MLM) 
• Next sentence prediction (NSP) - Later work 

shows that NSP hurts performance though..

Example #1: we went to the river bank.
Example #2: I need to go to bank to make a deposit.



Masked Language Modeling (MLM)

• Q: Why we can’t do language modeling with bidirectional models?

• Solution: Mask out k% of the input words, and then predict the masked words

the man went to [MASK] to buy a [MASK] of milk

store gallon k = 15% in practice



Masked Language Modeling (MLM)

http://jalammar.github.io/illustrated-bert/



MLM: 80-10-10 corruption
For the 15% predicted words, 

• 80% of the time, they replace it with [MASK] token

went to the store  went to the [MASK]⟶

• 10% of the time, they replace it with a random word in the vocabulary

went to the store  went to the running⟶

• 10% of the time, they keep it unchanged

went to the store  went to the store⟶

Why? Because [MASK] tokens are never seen during fine-tuning
(See Table 8 of the paper for an ablation study)



Next Sentence Prediction (NSP)

• Motivation: many NLP downstream tasks require understanding the relationship 
between two sentences (natural language inference, paraphrase detection, QA)

• NSP is designed to reduce the gap between pre-training and fine-tuning

They sample two contiguous 
segments for 50% of the 
time and another random 
segment from the corpus for 
50% of the time

[CLS]: a special token 
always at the beginning

[SEP]: a special token used 
to separate two segments

This actually hurts model learning based on later work!



BERT pre-training

• Vocabulary size: 30,000 wordpieces (common sub-word units) (Wu et al., 2016)

(Image: Stanford 
CS224N)

• Input embeddings:

Separate two segments

Special token added to the beginning of each 
input sequence Special token to separate sentence A/B



BERT pre-training

• BERT-base: 12 layers, 768 hidden size, 12 attention 
heads, 110M parameters

• BERT-large: 24 layers, 1024 hidden size, 16 attention 
heads, 340M parameters

• Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B)

• Max sequence size: 512 wordpiece tokens (roughly 256 
and 256 for two non-contiguous sequences)

• Trained for 1M steps, batch size 128k



BERT pre-training

• MLM and NSP are trained together

• [CLS] is pre-trained for NSP

• Other token representations are trained 

for MLM



Pretraining / fine-tuning
“Pre-train” a model on a large dataset for task X, then “fine-tune” it on a dataset for task Y

“Fine-tuning is the process of taking the network 
learned by these pre-trained models, and further 
training the model, often via an added neural net 
classifier that takes the top layer of the network as 
input, to perform some downstream task.”

Fine-tuning is a training 
process and takes 
gradient descent steps!



BERT fine-tuning
“Pretrain once, finetune many times.”

sentence-level tasks

• QQP: Quora Question Pairs (detect paraphrase questions) 
• QNLI: natural language inference over question answering data 
• SST-2: sentiment analysis



BERT fine-tuning
“Pretrain once, finetune many times.”

token-level tasks



Example: sentiment classification

We just need to introduce  parameters for 
classification tasks (C = # of classes, h = hidden size)!

C × h

All the parameters will be learned 
together (original BERT parameters 
+ new classifier parameters)

P(y = k) = softmaxk(Woh[CLS])

Wo ∈ ℝC×h



Example: named entity recognition (NER)
We just need to introduce  parameters for 
classification tasks (C = # of classes, h = hidden size)!

C × h

P(yi = k) = softmaxk(Wohi)

Wo ∈ ℝC×h



Experimental results: GLUE



Experimental results: SQuAD

SQuAD = Stanford Question Answering dataset



Ablation study: pre-training tasks

• MLM >> left-to-right LMs

• NSP improves on some tasks

• Note: later work (Joshi et al., 
2020; Liu et al., 2019) argued 
that NSP is not useful



Ablation study:  model sizes

The bigger, the better!

# layers
hidden  

size
# of 

heads



Encoder: other variations of BERT
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• ALBERT [Lan et al., 2020]: incorporates two parameter reduction techniques that 
lift the major obstacles in scaling pre-trained models  

• DeBERTa [He et al., 2021]: decoding-enhanced BERT with disentangled attention  
• SpanBERT [Joshi et al., 2019]: masking contiguous spans of words makes a 

harder, more useful pre-training task 
• ELECTRA [Clark et al., 2020]: corrupts texts by replacing some tokens with 

plausible alternatives sampled from a small generator network, then train a 
discriminative model that predicts whether each token in the corrupted input was replaced 
by a generator sample or not. 

• DistilBERT [Sanh et al., 2019]: distilled version of BERT that’s 40% smaller 
• TinyBERT [Jiao et al., 2019]: distill BERT for both pre-training & fine-tuning 
• …

https://arxiv.org/pdf/1909.11942.pdf
https://arxiv.org/abs/1907.10529
https://arxiv.org/pdf/2003.10555.pdf
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1909.10351


Encoder: pros & cons
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• Consider both left and right context 
• Capture intricate contextual relationships

• Not good at generating open-text from left-to-
right, one token at a time

Iroh goes to [M] tasty tea

make/brew/craft

Encoder

Iroh goes to make tasty tea

goes to make tasty tea END

Decoder



Pre-training architectures
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Encoder • Bidirectional; can condition 
on the future context

Decoder
• Language modeling; can only 

condition on the past context

Encoder-Decoder • Map two sequences of 
different length together



Text-to-text models: the best of both worlds

• So bar, encoder-only models (e.g., BERT) enjoy the benefits of bidirectionality but they 
can’t be used to generate text


• Decoder-only models (e.g., GPT) can do generation but they are left-to-right LMs..

• Text-to-text models combine the best of both worlds!

(Raffel et al., 2020): Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

T5 = Text-to-Text Transfer Transformer



Encoder-decoder: architecture

Natural Language Processing - CSE 517 / CSE 447 Lecture 6: Pre-training38

• Moving towards open-text generation… 
• Encoder builds a representation of the 

source and gives it to the decoder 
• Decoder uses the source representation to 

generate the target sentence 
• The encoder portion benefits from 

bidirectional context; the decoder 
portion is used to train the whole model 
through language modeling

w1, . . . , wt1

wt1+1, . . . , wt2

wt1+2, . . .

 

 

h1, . . . , ht1 = Encoder(w1, . . . , wt1)
ht1+1, . . . , ht2 = Decoder(wt1+1, . . . , wt2, h1, . . . , ht1)
yi ∼ Ahi + b, i > t

[Raffel et al., 2018]

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf


Encoder-decoder: machine translation example
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[Lena Viota Blog]

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html


Encoder-decoder: training objective
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• T5 [Raffel et al., 2018] 
• Text span corruption (denoising): Replace 

different-length spans from the input with 
unique placeholders (e.g., <extra_id_0>); 
decode out the masked spans. 
• Done during text preprocessing: 

training uses language modeling 
objective at the decoder side

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf
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• Encoder-decoders works better than decoders 
• Span corruption (denoising) objective works better than language modeling

Encoder-decoder: T5 [Raffel et al., 2018]

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf
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[Raffel et al., 2018]

• Text-to-Text: convert NLP tasks into input/
output text sequences 

• Dataset: Colossal Clean Crawled Corpus (C4), 
750G text data! 

• Various Sized Models: 
• Base (222M) 
• Small (60M) 
• Large (770M) 
• 3B 
• 11B 

• Achieved SOTA with scaling & purity of data

[Google Blog]

Encoder-decoder: T5

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf
https://blog.research.google/2020/02/exploring-transfer-learning-with-t5.html


Encoder-decoder: pros & cons
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• A nice middle ground between leveraging bidirectional 
contexts and open-text generation 

• Good for multi-task fine-tuning

• Require more text wrangling 
• Harder to train 
• Less flexible for natural language generation
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Encoder • Bidirectional; can condition 
on the future context

Decoder
• Language modeling; can only 

condition on the past context

Encoder-Decoder • Map two sequences of 
different length together

Pre-training architectures



Decoder: training objective
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• Many most famous generative LLMs are decoder-
only 
• e.g., GPT1/2/3/4, Llama1/2 

• Language modeling! Natural to be used for 
open-text generation 

• Conditional LM:  

• Conditioned on a source context  to generate 
from left-to-right 

• Can be fine-tuned for natural language 
generation (NLG) tasks, e.g., dialogue, 
summarization.

p(wt |w1, . . . , wt−1, x)
x

w1, w2, w3, w4, w5

w2, w3, w4, w5, w6

h1, . . . , h5

A, b
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• Customizing the pre-trained model for 
downstream tasks: 
• Add a linear layer on top of the last hidden 

layer to make it a classifier! 
• During fine-tuning, trained the randomly 

initialized linear layer, along with all 
parameters in the neural net.

Linear

h1, . . . , h5

A, b

or

Is Santa Claus real figure?

Decoder: training objective



Decoder: GPT
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Generative Pre-trained Transformer [Radford et al., 2018]

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf


How to use these pre-trained models?



How to pick a proper architecture for a given task?
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• Right now decoder-only models seem to dominant the field at the 
moment 
• e.g., GPT1/2/3/4, Mistral, Llama1/2 

• T5 (seq2seq) works well with multi-tasking 
• Picking the best model architecture remains an open research 

question!


