

COMP 3361 Natural Language Processing

Lecture 10: Pre-training and large language models (LLMs)

Announcements

- TA office Hour: Thursday 9 am 10:15 am. <u>Book online</u>
- Get started on assignment 2 ASAP!
 - Join #assignment-2 Slack channel for discussion

Lecture plan

- Neural language models: recap
- Traditional to modern NLP
 - Traditional learning paradigm
 - Supervised training/fine-tuning only, NO pre-training
 - Modern learning paradigm
 - Pretrain + fine-tuning, pretrain + prompting/in-context learning
- Pretraining overview
- BERT pretraining

Neural language models: recap

Neural language models: overview

- Input: sequences of words (or tokens)
- Output: probability distribution over the next word (token)

Neural language models: tokenization

 $p(x|\text{START})p(x|\text{START I})p(x|\cdots \text{went})$ $p(x|\cdots \text{to})$ $p(x|\cdots \text{the})$ $p(x|\cdots \text{park})$ p(x|START I went to the park.)

Neural language models: neural networks

RNNs

Transformers

Traditional to modern NLP

N-gram language models

Neural language models: BERT, GPT

Traditional models: Naive Bayes

Neural models: Transformers

Static embeddings: word2vec

Contextual embeddings: BERT, GPT

Traditional to modern NLP: training paradigm

Neural language models: BERT, GPT N-gram language models Traditional models: Naive Bayes Neural models: Transformers Static embeddings: word2vec Contextual embeddings: BERT, GPT New learning paradigm: Pretrain, ICL Traditional learning paradigm

Question: How to train and use neural language models for different NLP tasks?

Training models for NLP tasks

Foundational Technologies

- Language Modeling
- Part-of-speech Tagging
- Syntactic Parsing
- Dependency Parsing
- Named Entity recognition
- Coreference resolution
- Word Sense Disambiguation
- Semantic Role Labelling
-

High-Level Tasks and Applications

- Sentiment Analysis
- Information Extraction
- Machine Translation
- Question Answering
- Semantic Parsing
- Summarization
- Dialogue systems
- Language and Vision
- Data-to-Text Generation
-

Input X	Output Y	Task
Text	Label	Text Classification (e.g., Sentiment Analysis)
Text	Linguistic Structure	Structured Prediction (e.g., Part-of-Speech Tagging)
Text	Text	Text Generation (e.g., Translation, Summarization)

Example: Training Transformers for sentiment analysis

Task:

Model:

Transformers

- Supervised training/fine-tuning only, NO pre-training
 - Collect (x, y) task training pairs

Data:

sentence	label
a stirring, funny and finally transporting re imagining of beauty and the beast and 1930s horror films	1
apparently reassembled from the cutting room floor of any given daytime soap	0
they presume their audience won't sit still for a sociology lesson	0
this is a visually stunning rumination on love , memory , history and the war between art and commerce	1
jonathan parker 's bartleby should have been the be all end all of the modern office anomie films	1

- Supervised training/fine-tuning only, NO pre-training
 - Collect (x, y) task training pairs
 - \bullet Randomly initialize your models f(x) (e.g., vanilla Transformers)

Randomly initialized Transformers

NO pretrained parameters used

- Supervised training/fine-tuning only, NO pre-training
 - Collect (x, y) task training pairs
 - \bullet Randomly initialize your models f(x) (e.g., vanilla Transformers)
 - Train f(x) on (x, y) pairs

Train Transformers only on task labeled data

- Supervised training/fine-tuning only, NO pre-training
 - Collect (x, y) task training pairs
 - \bullet Randomly initialize your models f(x) (e.g., vanilla Transformers)
 - Train f(x) on (x, y) pairs

Then you get a trained Transformers **ONLY** for sentiment analysis The model can be: NB, LR, RNNs, LSTM too

- Supervised training/fine-tuning only, NO pre-training
 - Train Transformer or other models separately for each task

- Pre-training + supervised training/fine-tuning
 - First train Transformer using a lot of general text using unsupervised learning. This is called **pretraining**.

- Pre-training + supervised training/fine-tuning
 - First train Transformer using a lot of general text using unsupervised learning. This is called **pretraining**.

1. Randomly initialized Transformers

- Pre-training + supervised training/fine-tuning
 - First train Transformer using a lot of general text using unsupervised learning. This is called pretraining.

2. Pre-train Transformers on large text data with general objectives

>2M GPU hours

- Pre-training + supervised training/fine-tuning
 - First train Transformer using a lot of general text using unsupervised learning. This is called **pretraining**.
 - Then train the pretrained Transformer for a specific task using supervised learning. This is called **finetuning**.

- Pre-training + supervised training/fine-tuning
 - First train Transformer using a lot of general text using unsupervised learning. This is called **pretraining**.

• Then train the pretrained Transformer for a specific task using supervised learning. This is called **finetuning**.

Example: BERT for sentiment classification

Evolution tree of pretrained LMs

Latest learning paradigm with LLMs

- Pre-training + prompting/in-context learning (no training this step)
 - First train a large (>7~175B) Transformer using a lot of general text using unsupervised learning. This is called large language model pretraining.

Latest learning paradigm with LLMs

- Pre-training + prompting/in-context learning (no training this step)
 - First train a large (>7~175B) Transformer using a lot of general text using unsupervised learning. This is called large language model pretraining.
 - Then **directly use** the pretrained large Transformer (**no further finetuning/training**) for any different task given only a natural language description of the task or a few task (x, y) examples. This is called **prompting/in-context**

learning.

Zero-shot prompting

Translate English to French:

sea otter => loutre de mer

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese =>

prompt

Few-shot prompting/in-context learning

Example: Prompting ChatGPT for sentiment analysis

Pre-training + prompting/in-context learning (no training this step)

You

what is the sentiment of "predictable with no fun"? just tell me: positive, negative, or neutral.

ChatGPT

Negative.

Already pretrained ChatGPT

No further training for sentiment analysis

Just prompting to conduct the task!

Pretraining: training objectives?

- During pretraining, we have a large text corpus (no task labels)
 - Key question: what labels or objectives used to train the vanilla Transformers?

Pretraining: training objectives?

- During pretraining, we have a large text corpus (no task labels)
 - Key question: what labels or objectives used to train the vanilla Transformers?

Pretraining: training objectives?

Devlin et al., 2018

Masked token prediction

Denoising span-mask prediction

Next token prediction

BERT: Bidirectional Encoder Representations from Transformers

(Released in 2018/10)

- It is a fine-tuning approach based on a deep bidirectional
 Transformer encoder instead of a Transformer decoder
- The key: learn representations based on bidirectional contexts

Example #1: we went to the river bank.

Example #2: I need to go to bank to make a deposit.

- Two new pre-training objectives:
 - Masked language modeling (MLM)
 - Next sentence prediction (NSP) Later work shows that NSP hurts performance though...

