COMP 3361 Natural Language Processing

Lecture 7: Recurrent Neural Networks

Spring 2024

Announcements

® The class will not have an in-person/zoom meeting this Friday.

® \We will record a video tutorial on PyTorch and huggingface and
upload it to the course website.

® Assignment 1 due in two weeks!
o FERL4! Happy Chinese New Year.

Lecture plan

Recap of Byte-pair encoding (BPE) tokenization
Other tokenization variants
Basics of neural networks

Recurrent neural networks

Neural language models: tokenization

Tokenization to input vectors

p(z|START) p(x|START I)p(z|---went) p(z|---to) p(z|---the) p(x|---park) p(x|START I went to the park.)

Neural Network

T

101 1037 17453 14726 19379 12758 2006 2293 102
3) substitute tokens with their ids

[CLS] a visua 1ly stunnin g rum ##ination on 1 [SEP]

Tokeniza tion
—|— |< ° _t. . DistilBertTokenizer) [CLS] and []
oKenlizZation.
vvvvv 1ly stunning rum ##ination on 1

1) Break words into tokens
Tokenize

“a visually stunning rumination on love”

Byte-pair encoding: ChatGPT example

Tokens Characters

Call me Ishmael. Some years ago—never mind how long precisely—having 239 1109

little or no money in my purse, and nothing particular to interest me on
[7368, 757, 57704, 1764, 301, 13, 4427, 1667, 4227, 2345, 37593, 4059,

_ o _ 1268, 1317, 24559, 2345, 69666, 2697, 477, 912, 3300, 304, 856, 53101,
the world. It is a way I have of driving off the spleen and regulating 11. 393. 4400. 4040. 311. 2802. T57. 389. 31984 11. 358. 3463. 358

shore, I thought I would sail about a little and see the watery part of

the circulation. Whenever I find myself growing grim about the mouth; 1053, 30503, 922, 264, 2697, 323, 1518, 279, 30125, 727, 961, 315, 279,
1917, 13, 1102, 374, 264, 1648, 358, 617, 315, 10043, 1022, 279, 87450,
268, 323, 58499, 279, 35855, 13, 43633, 358, 1505, 7182, 7982, 44517,

922, 279, 11013, 26, 15716, 433, 374, 264, 41369, 11, 1377, 73825, 6841,
the rear of every funeral I meet; and especially whenever my hypos get 304, 856, 13836, 26, 15716, 358, 1505, 7182, 4457, 3935, 6751, 7251, 985,

such an upper hand of me, that it requires a strong moral principle to 1603, 78766, 83273, 11, 323, 12967, 709, 279, 14981, 315, 1475, 32079,
358, 3449, 26, 323, 5423, 15716, 856, 6409, 981, 636, 1778, 459, 8582,

1450, 315, 757, 11, 430, 433, 7612, 264, 3831, 16033, 17966, 311, 5471,
knocking people’s hats off-then, I account it high time tozz get to sea 757, 505, 36192, 36567, 1139, 279, 8761, 11, 323, 1749, 2740, 50244,

as soon as I can. This is my substitute for pistol and ball. With a 1274, 753, 45526, 1022, 2345, 3473, 11, 358, 2759, 433, 1579, 892, 311,
10616, 636, 311, 9581, 439, 5246, 439, 358, 649, 13, 1115, 374, 856,

28779, 369, 40536, 323, 5041, 13, 3161, 264, 41903, 67784, 356, 4428,
take to the ship. There is nothing surprising in this. If they but knew 3872, 5678, 5304, 813, 20827, 26, 358, 30666, 1935, 311, 279, 8448, 13,
1t, almost all men in their degree, some time or other, cherish very 2684, 374, 4400, 15206, 304, 420, 13, 1442, 814, 719, 7020, 433, 11,
4661, 682, 3026, 304, 872, 8547, 11, 1063, 892, 477, 1023, 11, 87785,

“nnn mems ooa 4890, 16024, 7119, 279, 18435, 449, 757, 131
TOKEN IDS

whenever it is a damp, drizzly November in my soul; whenever I find
myself involuntarily pausing before coffin warehouses, and bringing up

prevent me from deliberately stepping into the street, and methodically
philosophical flourish Cato throws himself upon his sword; I quietly

nearly the same feelings towards the ocean with me.

(TEXT

Byte-pair encoding: usage

® Basically state of the art in tokenization

® Used in all modern left-to-right large language models (LLMs),
including ChatGPT

Model/Tokenizer Vocabulary Size

GPT-3.5/GPT-4/ChatGPT

GPT-2/GPT-3

Llama2

Falcon

Byte-pair encoding: tokenization/encoding
V={1:",2:",3:%€,4:4,5:¢,6:h’,7:7,
8:°k’9:'m’,10:'n’, 11 : ‘p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’,16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’, 20 : * hug’}
Encoding algorithm
Given string S and (ordered) vocab V,
® Pretokenize D in same way as before
® Tokenize D into characters

® Perform merge rules in same order as in training until no more merges
may be done

Byte-pair encoding: tokenization/encoding
V={1:",2:",3:%€,4:4,5:¢,6:h’,7:7,
8:°k’9:'m’,10:'n’, 11 : ‘p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’,16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’,20 : ¢ hug’}

Encoding algorithm
Encode(“ hugs”)

Encode(“misshapenness”)

20, 12]

® Pretokenize D in same way as 9, 1,12,12,6, 2,
before 11, 3,10, 10, 3,12, 12]

® Tokenize D into characters

Given string S and (ordered) vocab)V

® Perform merge rules in same order
as in training until no more merges
may be done

Byte-pair encoding: decoding
V={1:7,2:a,3:%,4:1,5:¢,6: W, 7:%9,
8:°k,9:'m’,10:‘n’, 11 : p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’, 16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’, 20 : © hug’}

DeCOdlng algorlthm Encode(“ hugs”)

20, 12]
Encode(“misshapenness”) = [9,7,12,12,6, 2,
® |nitialize string S 1= ik 11, 3,10, 10, 3, 12, 12]
® Keep popping off tokens from the
front ot 1" and appending the
corresponding string to S

Given list of tokens T':

Decode(|20,12]) = “ hugs”
Decode([9,7,12,12,6,2,11, 3,10, 10, 3,12, 12])

— “misshapenness”

Byte-pair encoding: properties

® Efficientto run (greedy vs. global optimization)
® | ossless compression

® Potentially some shared representations - e.g., the token "hug” could
be used both in “"hug” and "hugging”

Weird properties of tokenizers

® [oken !|=word run run RunRun [6236, 1629, 6588, 6869]

® Spaces are part of token

17

® “run” is a different token than ” run

® Not invariant to case changes ToKeN s

® "Run” is a different token than “run”

Weird properties of tokenizers

tokenization ATEROT
® Token !=word EStreamFrame
o Spaces are part Of token NLP SolldGoldMaglkarp
y " - : N . PsyNetMessage
® "run” is a different token than * run don't -
embedreportprint
® Notinvariant to case changes victory Py
® “Run” is a different token than “run” lose oreAndOnline
. : . Co StreamerBot
® Tokenization fits statistics of your data ,
GoldMagikarp
® c.g., while these words are multiple tokens... /v externalToEVA
® These words are all 1 token in GPT-3's tokenizer! TheNitrome
TheNitromeFan
o \WVhy? . .
RandomRedditorWithNo
® Reddit usernames and certain code attributes appearead Y e

enough in the corpus to surface as its own token!

Example from https://www.lesswrong.com/posts/aPeJE8bSo6rAFol gg/solidgoldmagikarp-plus-prompt-generation

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

Other tokenization variants

Variants: no spaces in tokens

® The way we presented BPE, we included whitespace with the following word. (E.g., ” pug”)
® Thisis most common in modern LMs o~ space

® However, in another BPE variant, you instead strip whitespace (e.g., "pug”) and add spaces
oetween words at decoding time ~no space

® This was the original BPE paper’s implementation!
® Example:

o ["I" "hug” “pugs”] -> "l hug pugs” (w/out whitespace)

o [“"," hug”, " pugs”] -> “l hug pugs” (w/ whitespace)

Original (w/ whitespace) Updated (w/out whitespace)
Required: Required:
e Documents D e Documents D
e Desired vocabulary size IV (greater than chars in D) e Desired vocabulary size N (greater than chars in D)
Algorithm: Algorithm:
- Pre-tokenize D by splitting into words (split + Pre-tokenize D by splitting into words
before whitespace/punctuation) (removing whitespace)

® |nitialize V as the set of characters in D ® |nitialize V as the set of characters in D

Variants: no spaces in tokens

® For sub-word tokens, need to add “continue word” special character

/7

® E.g., forthe word “Tokenization”, it the subword tokens are “Token
and “ization”

® \V/out special character: ["Token”, "ization"] -> “Token ization”

® \\V/ special character #: ["Token”, "#ization”] -> Tokenization”

® \When decoding, it does not have special character add a space

® Example:
‘ [Illlll Il‘ill’ II#EkeII II ll Ilhugll ”pug”, II#L II] > II| ‘Ike _to hug pugs

Variants: no spaces in tokens

® | oses some whitespace information (lossy compression!)

Il|

® [£.g., Tokenize("l eat cake.”) == Tokenize(

® Especially problematic for code (e.g., Python) - why?

tokenizer = AutoTokenizer.from_pretrained("openai-gpt")
tokens = tokenizer.encode('"i eat cake.")

print(tokens)

print(tokenizer.decode(tokens))

tokens = tokenizer.encode(" i eat cake
print(tokens)

print(tokenizer.decode(tokens))

 0.4s

(249, 2425, 5409, 239]
1 eat cake.
(249, 2425, 5409, 239]
1 eat cake.

eat cake ")

(Example using
GPT's tokenizer,
which does not
include spaces in
the token)

Variants: no pre-tokenization

® |n the variant we proposed, we start by splitting into words
® This guarantees that each token will be no longer than one wora

® However, this does not work so well for character-based languages.
Why?

Variants: no pre-tokenization

® |nstead, we could not pre-tokenize, and treat the entire document or
sentence as a single list of tokens

® Allows for tokens to span multiple words/characters

® Sometimes called SentencePiece tokenization* (Kudo, 2018)

* (not to be confused with the

SentencePiece library, which Paper: https:/arxiv.org/abs/1808.06226
is an implementation of many Library: https://github.com/gooqgle/sentencepiece

kinds of tokenization)

Original (w/ pre-tokenization) Updated (w/out pre-tokenization)
Required: Required:
® Documents D ® Documents D

® Desired vocabulary size IV (greater than chars in D) e Desired vocabulary size N (greater than chars in D)

Algorithm: Algorithm:

- Pre-tokenize D by splitting into words

| | | + Do not pre-tokenize D
(split before whitespace/punctuation) - |
e Initialize V as the set of characters in D

® |nitialize V as the set of characters in D , _
® (~AN\/art 7) ntA A lict Af tAlane (charactare)

https://arxiv.org/abs/1808.06226
https://github.com/google/sentencepiece

Variants: no pre-tokenization

® Allows sequences of words/characters to become tokens

SentencePiece paper example in Japanese:
https://arxiv.org/pdf/1808.06226.pdf

o Raw text: [Z AIZH ISR, 1 (Hello world.)
e Tokenized: [Z AIZH X [THFL]

Jurassic-1 model example in English:
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6 jurassic tech paper.pdf

Q: What is the most successful film to date?

A: The most successful film to date is "The Lord of the Rings: The Fellowship of the Ring".
Lord of the Rings %8.47
Matrix %7.65
Avengers %5.86

Jan King %5.73

https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://arxiv.org/pdf/1808.06226.pdf

Variants: byte-based

® Originally, we presented BPE as dealing with characters as the smallest unit
® However, there are many characters - especially if you want to support:
® character-based languages (e.g., Chinese has >100k characters!)

® non-alphanumeric characters like emojis (Unicode 15 has ~150k

characters!) *Only 256 bytes!
® |nstead, can initialize tokens as set of bytes! (e.g., with UTF-8%) Each Unicode
Original (w/ characters) Modified (w/ bytes) char is 1-4 bytes
Required: Required:
e Documents D e Documents D
e Desired vocabulary size IN (greater than chars in D) e Desired vocabulary size IV (greater than chars in D)
Algorithm: Algorithm:
e Pre-tokenize D by splitting into words (split before e Pre-tokenize D by splitting into words (split before
whitespace/punctuation) whitespace/punctuation)
- Initialize V as the set of characters in D + Initialize V as the set of bytes in D
- Convert D into a list of tokens (characters) + Convert D into a list of tokens (bytes)

o WhilelV]< N o WhilelV]< N

Variants: byte-based

While character-based GPT tokenizer The Byte-based GPT-2 tokenizer
fails on emojis and Japanese... succeeds!

gpt_tokenizer = AutoTokenizer.from_pretrained gpt2_tokenizer = AutoTokenizer.from pretrained("gpt2")
tokens = gpt_tokenizer.encode('@®") tokens = gpt2_tokenizer.encode('@')

print|(tokens) print(tokens)

print(gpt_tokenizer.decode(tokens)) print(gpt2_tokenizer.decode(tokens))

tokens = gpt_tokenizer.encode('CAJCHEE") tokens = gpt2_tokenizer.encode('CAlCH(E")
print(tokens) print(tokens)

print(gpt_tokenizer.decode(tokens)) print(gpt2_tokenizer.decode(tokens))
0.7s v 0.bs

0] 147249, 224]

<unk> A

0, @, 0, 0, 0] 146036, 22174, 28618, 2515, 94, 31676}
<unk><unk><unk><unk><unk> B

Variants: VWordPiece objective

® To merge, we selected the bigram with highest
frequency p(Uz’, Uj)
® This is the same as bigram with highest probability!

Modified (Word Piece)

® |nstead, we could choose the bigram which woula
maximize the likelihood of the data after the
merge is made (also called WordPiece!)

+ For the bigram that would

Original (BPE) maximize likelihood of the training
data once the change is made i Y;
- For the most frequent bigram (breaking ties arbitrarily)
vi; V5 (breaking ties arbitrarily) (Same as bigram which maximizes
(Sam as bigram which p(vi, v;)

maximizes - P(Vi; ;)) p(vi)p(v;j))

Variants: VWordPiece objective
® BPE: the bigram with highest frequency/highest probability ~ P(vi, ;)

® \WordPiece: bigram which maximizes the likelihood of the p(vi, ;)

data after the merge is made p(vi)p(v;)

® Maximizes the probability of the bigram, normalized by the
orobability of the unigrams

Examples of LLMs and their tokenizers

Model/Tokenizer Objective Spaces part of token? Pre-tokenization Smallest unit

GPT Character-level

GPT-2/3/4, ChatGPT,

Llama(2), Falcon, ... BPE Yes Yes Byte-level

No. “SentencePiece” -

Jurassic BPE Yes treat whitespace like Byte-level
char
Bert, DistilBert,
Electra WordPiece No Yes Character-level

No. “SentencePiece” -
Unigram Yes treat whitespace like Character-level
char”

TS5, ALBERT, XLNet,
Marian

“*For non-English languages

(Very quick) Deep learning review

Neural networks

Goal: Approximate some function / : R" — R

Essential elements:
® Input: Vector = € R¥, Output: ¥ € R

® Hidden representation layers ki € R*

® Non-linear, ditfterentiable (almost everywhere)
activation function o : R — R (applied element-wise)

1 Xdj

® \Weights connecting layers: W € R% and bias
term b € R%i+1 y = Wao(Wix + b1) + b2
where x € R?,§ € R?, W; € R**5.

Wy € R2** by € R*. and by € R?

® Set of all parameters is often reterred to as 6

https://en.wikipedia.org/wiki/Artificial neural network

https://en.wikipedia.org/wiki/Artificial_neural_network

1l +e 7

€ — €

et + e 4

Com

Sigmoid

Sigmoid
1.0 - 0.25 1
0.8 - 0.20 -
0.6 - 0.15 -
0.4 - 0.10 -
0.2 - 0.05 -
0.0 - ' | |.00 -

Sigmoid Derivative

Tanh

Tanh

1.0 - 1.0 -
0.8 -

0.5
0.6 -

0.0
0.4 -

-0.5
0.2 -
—-1.0 - 0.0 -

-10 -5 0 5 10

Tanh Derivative

|

10 A

RelU

mon activation functions

RelU

RelLU Derivative

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

GELU

GelU

GELU Derivative

N

0.8 -
0.6 -
0.4 -

0.2 -

0.0 . \}

max (0, x)

: 1 + erf
57 er

il s

Learning

Required:
® Training data D = {($(1)7 y(l))7 SRR (x(n), y(n))}
® Model family: some specitied function (e.g., ¥ = Wao(Wiz +b1) + bs)

® Number/size ot hidden layers, activation function, etc. are FIXED
here

e (Differentiable) Loss function L(y,9) : R* x R* = R
Learning Problem:

N
n 1 . . .
9 — ar 1I1— L (2)7 A(Z) — Qj(z)
gem N ;:1: (v, ¥ fo(x*"))

Common loss functions

® Regression problems:

® Fuclidean Distance/Mean Squared Error/L2 loss:
k

. . 1 .
Ly(y,9) = ly — 9ll5 = 5 > (yi — 9i)°

i=1 k
® Mean Absolute Error/L1 loss: Li(y,9) = |ly — 9|1 = Z v — Ui
® 2-way classification: .
® Binary Cross Entropy Loss: Lpcr(y,y) = —|ylog(y) + (1 — y) log(1 —)]
o Multi-class classification: (for example, words...)
® Cross Entropy Loss:

L -1
(Very related to perplexity!) ce(Y Z yi log(y

Gradient Descent
Learning Problem:

"Loss landscape” - loss w.r.t 0

https://www.cs.umd.edu/~tomg/projects/landscapes/

N
N 1 . . .
0 = arg min— L (7’), (1) 7 (1)

® However, finding the global minimum is often impossible
in practice (need to search over all of R4™I)

® |[nstead, get a local minimum with gradient descent h)
Gradient Descent o
. . (2)
® | ecarning rate @ € R,a > 0 (often quite small e.g., 3e-4) gt
e e . 0 N o 1 . . @L 9(2) o aegi)
® Random\y nitialize 6)() ext estlzate earning ra:e (step size) %() — :
, | L 00D g g 9L (gl oL
® [teratively get better estimate with: g 06 L905)

Previous Estimate

Stochastic gradient descent

Gradient Descent:

| . 7
0G+1) _ (i) _ o o 2_9(9@)

® Problem: calculating the true gradient can be very expensive (requires running model

on entire dataset!)

® Solution: Stochastic Gradient Descent

® Sample a subset of the data of fixed size (batch size)
® Take the gradient with respect to that subset
® Take a step in that direction; repeat

® Not only is it more computationally efficient, but it often tfinds better minima than
vanilla gradient descent

® \Why? Possibly because it does a better job skipping past plateaus in loss landscape

Backpropagation

One efficient way to calculate the gradient is with backpropagation.

L everages the Chain Rule: 4Y _ ay du
dr dudz

Hidden

1. Forward Pass
hi1 = Wix + b
hz — O'(hl)

! y = Waho + b2 . .
Q parameter using the chain
2

. Calculate Loss rule and intermediate outputs
L(y,y

(Y, 9)

3. Backwards Pass

Calculate the gradient

of the loss w.r.t. each

B I ti dy dydu
1 Forward Pass (Long, messy exact derivation below)
hy = Wiz + bo 3. Backwards Pass
o 0L
= o(h1) Y
. L 0L 03 OL O(Wahg+ by)
— Woho + b OL _ 0L 0§ _ OL 0Waha+ba) _ o
J 2alte e oW,) oW, a5 oWs % 2
OL 0L 0§ 0L 9(Waha+by) o
Obs O Oby Of b, —
2. Calculate Loss o _OL _OL 0j _ 9L d(Wahatby) _ .
Ly, §) "2 Ohy O Ohy O Ohs e
| 5 ._8_L_8_L.%_5 Oo(h)
" Ohy Ohe Ohy " Oy
oL — 0L 0Oh _5 .5’(W1:E+b)_5 T
oW, 0Oh, ow, ™ ow, ™M
oL JL 0Oh ’8(W1x+b)

Classification with deep learning

® For classification problems (like next word-prediction...) we want to
oredict a probability distribution over the label space

® However, neural networks’ output ¥ € R® is not guaranteed (or likely) to
be a probability distribution

® To force the output to be a probability distribution, we apply the
softmax function

exp(y;)
S:;'Z—1 exp(y;)

softmax(y); =

* The values ¥ betore applying the softmax are often called “logits”

Language modeling with neural networks

Inputs/Outputs

® Input: sequences of words (or tokens)

® Output: probability distribution over the next word (token)
p(x|START) p(x|START I)p(z|---went) p(z|---to) p(z|---the) p(x|---park) p(x|START I went to the park.)

The 3 think 11% to 35% the 29%]| |bathroo 3% and 14% I 21%
When 2.5%|| was 5% back 8% a 9% | | doctor 2% with 9 It 6
They 2% || went 2% into 5% see 5% | |hospita 2% , 8% The 3%

am 1% [|through 4% my 3% || store 1.5% to 7% || There 3%
I 1% will 1% out 3% bed 2%
like 0.5% on 2% || school 1% park 0.5% : 6% | | STOP 1%
Banana0.1% e %0

Neural Network

Neural language models

But neural networks take in real-valued vectors, not words...

® Use one-hot or learned embeddings to map from words to vectors!
® | earned embeddings become part of parameters 6

Neural networks output vectors, not probability distributions...

® Apply the softmax to the outputs!

® \What should the size of our output distribution be?
® Same size as our vocabulary |V

Don’t neural networks need a fixed-size vector as input? And isn't text
variable length?

® |deas?

Sliding window
Don’t neural networks need a fixed-size vector as input? And isn't text
variable length?
Idea 1: Sliding window of size N

® Cannot look more than N words back

® Basically neural approximation of an N-aram model
Y PP J p(z|the park.)

p(z|I went to)

\

p(x|START I went) Neural Network

Neural Network

Recurrent neural networks
Idea 2: Recurrent Neural Networks (RNNs)

Essential components:

® One network is applied recursively to the sequence

® |nputs: previous hidden state -1, observation

® Outputs: next hidden state /¢, (optionally) output ¥t

® Memory about history is passed through hidden states

p(x|START) p(x|START I) - p(x|START I went to the park.)

20000000

Example RNN

Embedding

p(x|START I)

Variables:

Zt: input (embedding) vector
Yt: output vector (logits)

Pt: probability over tokens
hi—1: previous hidden vector
ht: next hidden vector

Oh: activation function for
hidden state

9y: output activation function

Equations:
hy := Oh(WhCIZ‘t + Uphi—1 + bh)

Yt - — O'y(Wyht -+ by)
eXp(yti)
Z?:j eXp(ytj)

Pt; —

Example RNN

9y = P(x®)|the students opened their)

output distribution

g'") = softmax (Uh,(‘) + b2) c RIVI

books
l laptops
!
= =41 L
< >
a A 200
U
h!(h4)

| 1 2
"1 "re] "r
hidden states
(t) _ (t-1) (t o W, & W,
h o (Whh + W.e'" + bl) O > O >
h(9) is the initial hidden state O O
—

word embeddings
elt) — gt

oooo}g{oooo]

'l

the
(1)

words / one-hot vectors

z() ¢ RIVI 7 (2)

Note: this input sequence could be much
longer now!

students

o(3)

opened
7(3)

-

S

—{oooc]g{oooo]&;

&

Y

®
~~
—
—

oooo]g{ocoo

El

their

(4)

Recurrent neural networks

® How can information from time an earlier state (e.g., time 0) pass to a
later state (time t?)

® Through the hidden states!

® Fven though they are continuous vectors, can represent very rich
information (up to the entire history from the beginning)

Pwi,wy, ...ow,) = P(w)) X P(wy | w)) X P(ws | wi,wy) X ..o XP(w, | Wi, Wsy ccoow, 1)

No Markov
= P(w; | hy) X P(w, | h)) X P(ws | hy) X ... x P(w, | h,_)) assumption here!
p(z|START) p(z|START I) : p(z|START I went to the park.)

20000000

Training procedure

E.g., it you wanted to train on "<START>| went to the park.<STOP>"...

1. Input/Output Pairs

X (input)
START
START |

START | went
START | went to
START | went to the
START | went to the park
START | went to the park.

Training procedure

I InpuvyQutput Pairs 2. Run model on (batch of)@%§ from
data D to get probability
XS(;%“T") distributions/# (running softmax at
START | end to ensure valid probability
START | went CoL :
START | went to distribution)

START | went to the

START | went to the park
START | went to the park.

Training procedure

2. Run model on (batch of) 2's from

data D to get probability
distributionsi#

3. Calculate loss compared to true

. Or—\OO:

0 Y's (Cross Entropy Loss)

LCE Z Yi log

Yt

oc:o»—x:

Training procedure r1.x(y Zyz log(#

p(STOP|START)| -01

-
»(The|START) | .03 0 }ctual observed word) 3. Calculate loss compared to true
p(IIST@?E 6(1)1 ”y (1) Y's (Cross Entropy Loss)

p(apple|START) _.062_

Lcee(y1,y1) = —0xlog(.01) — 0 xlog(.03) — 1 x —log(.1) — --- — 0 * log(.002)
A —log(.1) = —log(p(I|START))
J
:z:|START

3-8 W o000

Training procedure - gradient descent step

Get training x-y pairs from batch
. Run model to get probability distributions over ¥

1.

2

3. Calculate loss compared to true ¥
4. Backpropagate to get the gradient
5.

Take a step of gradient descent 0" =0 — s g_g(@(i))

p(x | START

a-u-u-0-0B-0-0-

