COMP 3361 Natural Language Processing

Lecture 6: Neural language models:
Overview, tokenization

Spring 2024



Announcements

® TA will host an online virtual office hour @4-5 pm today!
® Mainly about the assignment 1
® Book a slot via the link on Slack

® Also you can always ask questions on Slack!
o IR Happy Chinese New Year.

® \We will record a tutorial on PyTorch tor the next Friday's lecture and
upload it to the course website.

® So you don't need to attend in person on Feb 9

® Unless most of you want to have class on the morning of New Year's
Evel :)



Lecture plan

Neural language models: overview
Running examples of neural language models
Byte-pair encoding (BPE) tokenization

Other tokenization variants



Neural language models: overview



Neural language models: inputs/outputs

® Input: sequences of words (or tokens)

® Output: probability distribution over the next word (token)
p(x|START) p(x|START I)p(z|---went) p(z|---to) p(z|---the) p(x|---park) p(x|START I went to the park.)

The 3 think 11% to 35% the 29%]| |bathroo 3% and 14% I 21%
When 2.5%|| was 5% back 8% a 9% | | doctor 2% with 9 It 6
They 2% || went 2% into 5% see 5% | |hospita 2% , 8% The 3%

am 1% [|through 4% my 3% || store 1.5% to 7% || There 3%
I 1% will 1% out 3% bed 2%
like 0.5% on 2% || school 1% park 0.5% : 6% | | STOP 1%
Banana0.1% e %0

Neural Network




Neural language models

But neural networks take in real-valued vectors, not words...

® Use one-hot or learned embeddings to map from words to vectors!
® | earned embeddings become part of parameters 6

Neural networks output vectors, not probability distributions...

® Apply the softmax to the outputs!

® \What should the size of our output distribution be?

® Same size as our vocabulary |V



Example: BERT for sentiment classification

T k . “a visually stunning Movie Review positive
dSK. rumination on love” Sentiment Classifier

sentence | a be I
a stirring , funny and finally transporting re imagining of beauty and the beast and 1930s horror films 1
D at 3 apparently reassembled from the cutting room floor of any given daytime soap 0
) they presume their audience won't sit still for a sociology lesson 0

this is a visually stunning rumination on love , memory , history and the war between art and commerce 1

jonathan parker 's bartleby should have been the be all end all of the modern office anomie films 1




Example: BERT for sentiment classification

Movie Review Sentiment Classifier

ff DiStiBERT /" Logistic \\

Regression

‘ leain — positive
)

“a visually stunning
rumination on love”




BERT for sentiment classification: overview

Step #1: Use DistiIBERT to embed all the sentences

Sentence Embeddings
Sentence

0 1 - 7167
a stirring , funny and finally o
transporting re imagining of DistiIBERT n 9.215 | -0.140; - 0.20

beauty and the beast and 1930s

apparently reassembled from the

cutting room floor of any given Already (pre-)trained 1 0.172 | -0.144 371
daytime soap
—
ili
N

the movlie 1S undone by a

)9 filmmaking methodology that 's J “ e - bbb
just experimental enough \\\\‘ ’////




BERT for sentiment classification: overview

Step #2: Test/Train Split for model #2, logistic regression

Sentence Embeddings

Training set
75% of examples




BERT for sentiment classification: overview

Step #3: Train the logistic regression model using the training set

Sentence Embeddings Label
0 1 7167
0.215 |-0.1402 0.201
Model f Logistic \
Training Regression

©

O learn
\_ W,




BERT for sentiment classification: prediction

Movie Review Sentiment Classifier

ff DiStiBERT / Logistic \\

Regression

‘ leain — pPOSsitive
)

“a visually stunning
rumination on love”




Prediction step |:tokenization

[CLS] a visually stunning rum ##ination on love [SEP]
Tokenization
DistilBertTokenizer 2) Add [CLS] and [SEP] tokens
a visually stunning rum ##ination on love
1) Break words into tokens
Tokenize
- )

“a visually stunning rumination on love”



https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

Prediction step |:tokenization

101 1037 17453 14726 19379 12758 2006 2293 102

3) substitute tokens with their ids

[CLS] a visually stunning rum ##ination on love [SEP]
Tokenization
DistilBertTokenizer 2) Add [CLS] and [SEP] tokens
a visually stunning rum ##ination on love

1) Break words into tokens

Tokenize

“a visually stunning rumination on love”

. J
tokenized = df[0].apply((lambda x: tokenizer.encode(x, add special tokens=True))) BERT/DlStllBERT Input TenSOr
Tokens in each sequence
Raw Dataset Sequences of Token IDs
0 1 66
0

- . . 0 101 1037 0

a stirring , funny and finally transporting re... [101, 1037, 18385, 1010, 6057, 1998, 2633, 182...
apparently reassembled from the cutting room f... Tokenize [101, 4593, 2128, 27241, 23931, 2013, 1996, 62... 1 101 2027 0

_ _ o [101, 2027, 3653, 23545, 2037, 4378, 24185, 10... Input sequences
they presume their audience wo n't sit still{... » (101, 2023, 2003, 1037, 17453, 14726, 19379, 1... (reviews)

this is a visually stunning rumination on love... [101, 5655, 6262, 1005, 1055, 12075, 2571, 376...

jonathan parker 's bartleby should have been t... 1,999 101 1996 )



https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

Prediction step 2:input into BERT

DistiBERT

Input into the model

101 1037 17453 14726 19379 12758 2006

3) substitute tokens with their ids
Tokenization )

DistilBertTokeni : : N
istitbertiokenizer [CLS] a visually stunning rum ##ination on

2) Add [CLS] and [SEP] tokens
| 1) Break words into tokens

Tokenize

2293

love

102

[SEP]

“a visually stunning rumination on love”

import numpy as np

import pandas as pd

import torch

import transformers as ppb # pytorch transformers
from sklearn.linear model import LogisticRegression
from sklearn.model_selection import cross val score

from sklearn.model_selection import train test split

model class, tokenizer class, pretrained weights = (ppb.DistilBertModel, ppb.DistilBertTokenize

r, 'distilbert-base-uncased')

## Want BERT instead of distilBERT? Uncomment the following line:
#model class, tokenizer class, pretrained weights = (ppb.BertModel, ppb.BertTokenizer, 'bert-ba

se-uncased')

# Load pretrained model/tokenizer
tokenizer = tokenizer class.from pretrained(pretrained weights)

model = model class.from pretrained(pretrained weights)


https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

Prediction step 3: run BERT to get outputs

Model
Outputs
DistiiBERT
—
.
V' \
il 101 1037 17453 14726 19379 12758 2006 2293 102
Input
[CLS] a visually stunning rum ##ination on love [SEP]
last_hidden_states[0]
BERT Output Tensor/predictions
input ids = torch.tensor(np.array(padded)) T%mwini&wwmmmc

with torch.no grad():

last hidden states = model(input ids)

2,000
OQutput rows
(one per

sequence)



https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

Example overview so far

Raw text dataset Tokenized input

tensor
0 1 - 66
0
0 101 1037 . 0
a stirring , funny and finally transporting re...
apparently reassembled from the cutting room f... 1l 101 2027 (5]
they presume their audience wo n't sit still f...
this is a visually stunning rumination on love... -
jonathan parker 's bartleby should have been t... 1,999 101 1996 )

N\

~

DistiBERT

—
o o

.

V \

J

\S

BERT Output
Tensor/predictions



https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

Recapping a sentence’s journey

input_ids last _hidden states|[0]
0 1 66
0 101 1037 ... 0 fDiS’[HBEFﬂx
1

1,999
Batch
Tokenize all 2,000 sentences
Put each sentence in its own row
101 1037 17453 14726 19379 12758 2006 2293 102 0

[CLS] a visually stunning rum ##ination on love [SEP] PAD

Tokenize

“a visually stunning rumination on love”


https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

2,000
OQutput rows
(one per
sequence)

Slicing the important part

last_hidden_states[0]
BERT Output Tensor/predictions

66
Positions/tokens in each sequence

-8.215

0.124 O
768

Number of hidden

1T«
UITAL LD

features = last hidden states[0][:,0,:].numpy()

https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/, run the code on Colab!

only the first position: [CLS]

I

last _hidden states[0][:,0, :]
v N\

all hidden

all sentences unit outputs

2,000
Output rows
(one per
sequence)

Position

# Slice the output for the first position for all the sequences, take all hidden unit outputs


https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

Final BERT output features

0
2,000 1
OQutput rows
(one per
sequence)

1,999

Is the same as

Sentence Embeddings

‘label

2

3

2,000 4

Qutput rows

(one per 5
sequence)

5

.

1,999| 0.124 0.014

# Slice the output for the first position for all the sequences, take all hidden unit outputs

features = last hidden states[0][:,0,:].numpy()

https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/, run the code on Colab!


https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

Dataset for logistic regression

Step #2: Test/Train Split for model #2, logistic regression

‘ Sentence Embeddings label
Sentence Embeddings label 0 1 ~ 767
0 1 767 . . o 4
— 0 0.215 |-0.1402 0.201 1
0 0.215 | -0.1402 0.201 1
features 1
1
2
label - 3
3 Training set
1 75% of examples
- .
2
>
D 6
0
6
7 1,499
8
B Sentence Embeddings label
1 9 |
Testing set 0 1 - 767
25% of examples
1,500
1,999 0.124 | 0.014 0.274 1 \
1,999 | 0.124 | 0.014 0.274 1

labels = df[1]

train features, test features, train labels, test labels = train test split(features, labels)

https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/, run the code on Colab!



https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

Prediction step 4: get final predictions

15% | 0 (negative) Model #2 Output

.1
85% 1 (positive) (pOSItIVO)
P — Train a logistic regression classifier
Model #2 | |
\_ O learn J lr clf = LogisticRegression()
lr clf.fit(train features, train labels)
Model #2 Input
Model #1 Output
4 DistiBERT N - ot - g
' - | Run the trained logistic regression classifier
Model #1 °'°
\ 4 / lr clf.score(test features, test labels)
N /
Model #1 Input 101 1037 17453 14726 19379 12758 2006 2293 102

[CLS] a visually stunning rum ##ination on love [SEP]


https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

Example overview: BERT for sentiment classification

ff DistiIBERT \ f Logistic \\

Regression
p—
“a visually stunnin e
nationontove ||| @5 | — — 1
rumination on love eewm -
R g (positive)
) \

N )



https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

BERT is a encoder-only language model

BERT (Bidirectional Encoder Representations from Transformers)

1. Encoder-Only Model: BERT is designed as an encoder-only model. In the context of
the Transformer architecture, an encoder processes the input data (like text) to create
a representation of it. BERT's architecture is composed entirely of such encoders.

2. Cannot Generate Words: BERT is not designed to generate text in the same way
models like GPT-3 do. Instead, its strength lies in understanding the context and
meaning of words in a sentence. This is why it excels in tasks like sentence
classification, entity recognition, and question-answering, where understanding
context is crucial.

3. Working Mechanism: BERT analyzes and encodes the input text, taking into account
both the left and right context of each word in the input. This bidirectional
understanding is a key feature that differentiates BERT from earlier models that could

only analyze text in a single direction.




How about BERT vs. GPT-3?

BERT (Bidirectional Encoder Representations from Transformers) GPT-3 (Generative Pretrained Transformer 3)
1. Encoder-Only Model: BERT is designed as an encoder-only model. In the context of 1. Decoder-Only Model: GPT-3, on the other hand, is a decoder-only model. In the
the Transformer architecture, an encoder processes the input data (like text) to create Transformer architecture, a decoder is designed to generate output based on the
a representation of it. BERT's architecture is composed entirely of such encoders. input it receives. While BERT focuses on understanding and encoding input, GPT-3
2. Cannot Generate Words: BERT is not designed to generate text in the same way focuses on generating output.
models like GPT-3 do. Instead, its strength lies in understanding the context and 2. Generates Tokens: GPT-3 is capable of generating text, making it suitable for tasks
meaning of words in a sentence. This is why it excels in tasks like sentence like text completion, creative writing, and dialogue generation. It generates one word
classification, entity recognition, and question-answering, where understanding (or token) at a time and can continue generating text based on the context provided
context is crucial. by the previous text.
3. Working Mechanism: BERT analyzes and encodes the input text, taking into account 3. Working Mechanism: GPT-3 uses a unidirectional approach, meaning it only
both the left and right context of each word in the input. This bidirectional considers the context to the left (previous tokens) when generating a new token. This
understanding is a key feature that differentiates BERT from earlier models that could design is conducive to generating coherent and contextually relevant continuations of
only analyze text in a single direction. the input text.

Credits: ChatGPT



Usage example: GPT-3

Input Prompt: Recite the first law of robotics

v

- -G

Output:

https://jalammar.github.io/how-gpt3-works-visualizations-animations/



Usage example: GPT-3

1 2 3 4 5 6 2048

Input Recite the first law of robotics

Tl

Output:

https://jalammar.github.io/how-gpt3-works-visualizations-animations/



Usage example: GPT-3

GPT-3

robotics | ) 3

\ /)
1- Convert word 2- Magic 3- Convert vector
into vector into word
Vector (i think of size 12,289) Vector (i think of size 12,289)
Embedding of robotics Prediction result

+ positional encoding for position #6



Neural language models: tokenization



Neural language models: inputs/outputs

® Input: sequences of words (or tokens)

® Output: probability distribution over the next word (token)
p(x|START) p(x|START I)p(z|---went) p(z|---to) p(z|---the) p(x|---park) p(x|START I went to the park.)

The 3 think 11% to 35% the 29%]| |bathroo 3% and 14% I 21%
When 2.5%|| was 5% back 8% a 9% | | doctor 2% with 9 It 6
They 2% || went 2% into 5% see 5% | |hospita 2% , 8% The 3%

am 1% [|through 4% my 3% || store 1.5% to 7% || There 3%
I 1% will 1% out 3% bed 2%
like 0.5% on 2% || school 1% park 0.5% : 6% | | STOP 1%
Banana0.1% e %0

Neural Network




Neural language models: input vectors

But neural networks take in real-valued vectors, not words...
® Use one-hot or learned embeddings to map from words to vectors!

® | earned embeddings become part of parameters 6



Tokenization to input vectors

p(z|START) p(x|START I)p(z|---went) p(z|---to) p(z|---the) p(x|---park) p(x|START I went to the park.)

Neural Network

T

101 1037 17453 14726 19379 12758 2006 2293 102
3) substitute tokens with their ids

[CLS]  a  visua 1ly stunnin g rum  ##ination  on 1 [SEP]

Tokeniza tion
—|— |< ° _t. . DistilBertTokenizer ) [CLS] and [ ]
oKenlizZation.
vvvvv 1ly stunning rum ##ination on 1

1) Break words into tokens
Tokenize

“a visually stunning rumination on love”




ChatGPT tokenization example

Tokens Characters

Call me Ishmael. Some years ago—never mind how long precisely—having 239 1109

little or no money in my purse, and nothing particular to interest me on

shore, I thought I would sail about a little and see the watery part of
the world. It is a way I have of driving off the spleen and regulating
the circulation. Whenever I find myself growing grim about the mouth;
whenever it is a damp, drizzly November in my soul; whenever I find
myself involuntarily pausing before coffin warehouses, and bringing up
the rear of every funeral I meet; and especially whenever my hypos get
such an upper hand of me, that it requires a strong moral principle to
prevent me from deliberately stepping into the street, and methodically
knocking people’s hats off—-then, I account it high time tozz get to sea
as soon as I can. This is my substitute for pistol and ball. With a
philosophical flourish Cato throws himself upon his sword; I quietly
take to the ship. There is nothing surprising in this. If they but knew
1t, almost all men in their degree, some time or other, cherish very
nearly the same feelings towards the ocean with me.

(;TEXT

[7368, 757, 57704, 1764, 301, 13, 4427, 1667, 4227, 2345, 37593, 4059,
1268, 1317, 24559, 2345, 69666, 2697, 477, 912, 3300, 304, 856, 53101,
11, 323, 4400, 4040, 311, 2802, 757, 389, 31284, 11, 358, 3463, 358,
1053, 30503, 922, 264, 2697, 323, 1518, 279, 30125, 727, 961, 315, 279,
1917, 13, 1102, 374, 264, 1648, 358, 617, 315, 10043, 1022, 279, 87450,
268, 323, 58499, 279, 35855, 13, 43633, 358, 1505, 7182, 7982, 44517,
922, 279, 11013, 26, 15716, 433, 374, 264, 41369, 11, 1377, 73825, 6841,
304, 856, 13836, 26, 15716, 358, 1505, 7182, 4457, 3935, 6751, 7251, 985,
1603, 78766, 83273, 11, 323, 12967, 709, 279, 14981, 315, 1475, 32079,
358, 3449, 26, 323, 5423, 15716, 856, 6409, 981, 636, 1778, 459, 8582,
1450, 315, 757, 11, 430, 433, 7612, 264, 3831, 16033, 17966, 311, 5471,
757, 505, 36192, 36567, 1139, 279, 8761, 11, 323, 1749, 2740, 50244,
1274, 753, 45526, 1022, 2345, 3473, 11, 358, 2759, 433, 1579, 892, 311,
10616, 636, 311, 9581, 439, 5246, 439, 358, 649, 13, 1115, 374, 856,
28779, 369, 40536, 323, 5041, 13, 3161, 264, 41903, 67784, 356, 4428,
3872, 5678, 5304, 813, 20827, 26, 358, 30666, 1935, 311, 279, 8448, 13,
2684, 374, 4400, 15206, 304, 420, 13, 1442, 814, 719, 7020, 433, 11,
4661, 682, 3026, 304, 872, 8547, 11, 1063, 892, 477, 1023, 11, 87785,

“nnn mems ooa 4890, 16024, 7119, 279, 18435, 449, 757, 131
TOKEN IDS



Vocabulary: word-level

® Forthe n-gram model, our vocabulary V was comprised of all of the words in a
language
® Some problems with this:

e |V|can be quite large - ~470,000 words Webster's English Dictionary (3rd
edition)

¢ Language is changing all of the time - 690 words were added to Merriam
Webster's in September 2023 ("rizz", "goated”, “mid")

® Long tail of infrequent words. Many words just occur a few times
® Some words may not appear in a training set of documents

" 11 1 11 11

® No modeled relationship between words - e.g., “run”, “ran”, “runs”, “runner”
are all separate entries despite being linked in meaning



Character-level!?

What about representing text with characters?
oV ={a,bc, ... 2}

® (Maybe add capital letters, punctuation, spaces, ...)
® Pros:

® Small vocabulary size (1V| = 26 for English)

® Complete coverage (unseen words are represented by letters)

® Cons:

® Encoding becomes very long - # chars instead ot # words

® Poor inductive bias for learning



Word Character Subword tokenization!

How can we combine the high coverage of character-level
representation with the efficiency of word-level representation?

Subword tokenization! (e.g., Byte-Pair Encoding)
® Start with character-level representations

® Build up representations from there

Original BPE Paper (Sennrich et al., 2016)
https://arxiv.org/abs/1508.07209



https://arxiv.org/abs/1508.07909

Byte-pair encoding: ChatGPT example

Tokens Characters

Call me Ishmael. Some years ago—never mind how long precisely—having 239 1109

little or no money in my purse, and nothing particular to interest me on
[7368, 757, 57704, 1764, 301, 13, 4427, 1667, 4227, 2345, 37593, 4059,

_ o _ 1268, 1317, 24559, 2345, 69666, 2697, 477, 912, 3300, 304, 856, 53101,
the world. It is a way I have of driving off the spleen and regulating 11. 393. 4400. 4040. 311. 2802. T57. 389. 31984 11. 358. 3463. 358

shore, I thought I would sail about a little and see the watery part of

the circulation. Whenever I find myself growing grim about the mouth; 1053, 30503, 922, 264, 2697, 323, 1518, 279, 30125, 727, 961, 315, 279,
1917, 13, 1102, 374, 264, 1648, 358, 617, 315, 10043, 1022, 279, 87450,
268, 323, 58499, 279, 35855, 13, 43633, 358, 1505, 7182, 7982, 44517,

922, 279, 11013, 26, 15716, 433, 374, 264, 41369, 11, 1377, 73825, 6841,
the rear of every funeral I meet; and especially whenever my hypos get 304, 856, 13836, 26, 15716, 358, 1505, 7182, 4457, 3935, 6751, 7251, 985,

such an upper hand of me, that it requires a strong moral principle to 1603, 78766, 83273, 11, 323, 12967, 709, 279, 14981, 315, 1475, 32079,
358, 3449, 26, 323, 5423, 15716, 856, 6409, 981, 636, 1778, 459, 8582,

1450, 315, 757, 11, 430, 433, 7612, 264, 3831, 16033, 17966, 311, 5471,
knocking people’s hats off-then, I account it high time tozz get to sea 757, 505, 36192, 36567, 1139, 279, 8761, 11, 323, 1749, 2740, 50244,

as soon as I can. This is my substitute for pistol and ball. With a 1274, 753, 45526, 1022, 2345, 3473, 11, 358, 2759, 433, 1579, 892, 311,
10616, 636, 311, 9581, 439, 5246, 439, 358, 649, 13, 1115, 374, 856,

28779, 369, 40536, 323, 5041, 13, 3161, 264, 41903, 67784, 356, 4428,
take to the ship. There is nothing surprising in this. If they but knew 3872, 5678, 5304, 813, 20827, 26, 358, 30666, 1935, 311, 279, 8448, 13,
1t, almost all men in their degree, some time or other, cherish very 2684, 374, 4400, 15206, 304, 420, 13, 1442, 814, 719, 7020, 433, 11,
4661, 682, 3026, 304, 872, 8547, 11, 1063, 892, 477, 1023, 11, 87785,

“nnn mems ooa 4890, 16024, 7119, 279, 18435, 449, 757, 131
TOKEN IDS

whenever it is a damp, drizzly November in my soul; whenever I find
myself involuntarily pausing before coffin warehouses, and bringing up

prevent me from deliberately stepping into the street, and methodically
philosophical flourish Cato throws himself upon his sword; I quietly

nearly the same feelings towards the ocean with me.

( TEXT




Byte-pair encoding: usage

® Basically state of the art in tokenization

® Used in all modern left-to-right large language models (LLMs),
including ChatGPT

Model/Tokenizer Vocabulary Size

GPT-3.5/GPT-4/ChatGPT

GPT-2/GPT-3

Llama2

Falcon



Byte-pair encoding (BPE): algorithm

Required:

e Documents D

® Desired vocabulary size [N (greater than characters in D)
Algorithm:

e Pre-tokenize D by splitting into words (split before whitespace/punctuation)

e Initialize V as the set of characters in D

e Convert D into a list of tokens (characters)

e While!V]< N
@ et V= |V“|'1

e Get counts of all bigrams in D

® Forthe most frequent bigram Uiy Uj (breaking ties arbitrarily)

o | ot Un 1= concat(v;, v;)

e Change all instances in D of Yi» Vjto Un and add Unto V



Byte-pair encoding: example

Required: . . . .
. Docurmente ) ——— D = {“i hug pugs”, “hugging pugs is fun”, “i make puns” }

Algorithm: > D — {cciw, « hug”, « pugs”, “hugging”, « pugs”,

e Pre-tokenize D by splitting into words (split before

whitespace/punctuation) ¢ (39

igq” | “ fun” 8 “ make” | 7 pUHS” }
® |nitialize V as the set of characters in D

o Conver’cDintoaIis’toftokens(charac’ters) > V __ {a 9 cav cea ‘f’ cg7 chv civ ck7 cmv
o While|V|< N oy By by 55 ) Ay By ,
. S N A 7} ‘V‘ L 13
OLetn°:|V‘+1 n, p, s, urj, —

® Get counts of all bigrams inD R T T T T I T A I
D:{_l],[ ] h; u, g],[ , P, U, &, S]?

VA4

e For the most frequent bigram Yi» V3 (breaking

ties arbitrarily) :‘h’, ‘U_’, ‘g’, ‘g’, ‘i’, ‘n, g’] ,[ , P, U, g, 687],

o | ot Un = concat(v;, v;)

e Change all instances in D of Yi» Vjto Un _
and add /Un_tov -C 77 Cm77 Ca77 Ck77 667] 7 [C 77 Cp77 Cu?7 Cn77 487]}

Example inspired by: https://huggingface.co/docs/transformers/tokenizer summary



https://huggingface.co/docs/transformers/tokenizer_summary

Byte-pair encoding: example

Required: V={1:°7,2:%",3:%,4:14,5:2,6:h",7:%9,
® Documents D % (o) () () () ()
: :'m’, 10 :'n’, 11 : 12 :°s’,13 : "u
e Desired vocabulary size N (greater than chars in D) 3 79 ’ 0 7 P 7 : }
Algorithm:
e Pre-tokenize D by splitting into words (split before /mp/ementa'[‘ion agide: \We norma//y
whitespace/punctuation) : : : :
store ‘D with the token indices instead

e |nitialize V as the set of characters in D

e Convert D into a list of tokens (characters) of the text itself!
e While!VI< N: \

o Lot 70i= V] D = {[7],[1,6,13,5],[1,11,13,5,12],

® Get counts of all bigrams in D :

® For the most frequent bigram breaking -6’ 13’ 57 57 77 107 5] ) [17 117 137 57 12] ? [17 77 12] )
ties arbitrarily) 1,4,13,10],(7],[1,9,2,8,3],[1,11,13,10, 12|}

o | ot Un := concat(v;,v;)

vi,vj(

e Change all instances in D of Yi» Vjto Un For /eglblhty of the examp/e/ we will show

and add Unto V the text corresponding to each token



Required:

e Documents D

Byte-pair encoding: example

D — { :617] , [C 77 61177 6u77 ng] ’ [C 7, 6p77 (u77 A

® Desired vocabulary size N (greater than chars in D) ‘h’, ‘u’, o’ fo’ 1

Algorithm:

® Pre-tokenize D by splitting into words (split before
whitespace/punctuation)

N A S T A
,‘m’, ‘a’, 'k

® |nitialize V as the set of characters in D :
| | Bigram Count
® Convert D into a list of tokens (Characters) m A

e While V< N
OLetn::|V‘+1

e Get counts of all bigrams in D
Ui, Uy

3
3
2

o | ot Un = concat(v;, v;)

e Change all instances in D of Vi» Vjto Un

and add Unto V

V14 := concat(‘u’,

6]7[‘ 7’ Cp

g’) = ‘ug



Byte-pair encoding: example

Required:

e Documents D

e Desired vocabulary size N (greater than chars in D)
Algorithm:

® Pre-tokenize D by splitting into words (split before
whitespace/punctuation)

e |nitialize V as the set of characters in D

e Convert D into a list of tokens (characters)
e WhilelVI< N
o [t TV -= |V‘+1

e Get counts of all bigrams in D

® For the most frequent bigram Yi» V3 (breaking
ties arbitrarily)
o | ot Un = concat(v;, v;)
D of Vi Ujio Up

UntoV

D= {

|
—~—

:Ci?] , [C 77 Ch?) Cu77 Cg7] 7 [C 77 Cp77 6u7
| |

V14 := concat(‘u’,

:417] , [C 77 Ch?) Cug?] , [C 77 Cp77 Cug7, 687] 7
:¢h7’ Cug77 Cg77 Ci?) Cn77 Cg7] ’ [ ’
:C 77 Ci? ‘S’] 7 [C 77 Cf?) Cu77 Cn7] ’ [Ci?] 7

¢ )«

e Y L) L) ) L)
V_ 7a7e7f7g7

)
, m?) Ca}77 Ck77 667] 7 [C 77 Cp77 Cu77 Cn7, ‘S’]}
Ch?) 617’ 6k7’ Cm7’

6877 Cu77 Cug7}, ‘V‘ — 14

Can ) e

L, P,



Byte-pair encoding: example
Required: D={[1],["", ‘W, ‘ug’], ", ‘p’, ‘ug’, ‘s’,
e Documents D ' :

e Desired vocabulary size N (greater than chars in D)

Algorithm:

® Pre-tokenize D by splitting into words (split before
whitespace/punctuation)

e |nitialize V as the set of characters in D

e Convert D into a list of tokens (characters)
e WhileV|< N:
o et = |V‘_|_1

e Get counts of all bigrams in D
Ui, Uy

o | ot Un := concat(v;,v;)

e Change all instances in D of Vi» Vjto Un
and add Un to V




Byte-pair encoding: example
D = {

Required:

e Documents D

e Desired vocabulary size N (greater than chars in D)

Algorithm:

e Pre-tokenize D by splitting into words (split before
whitespace/punctuation)

e Initialize V as the set of characters in D

e ConvertD into a list of tokens (characters)

e While V< N
OLetn::|V‘+1

e Get counts of all bigrams in D

® For the most frequent bigram Yi» V3 (breaking

ties arbitrarily)
o | ot Un = concat(v;, v;)

e Change all instances in D of Vi» Vjto Un
and add Un to V

:617] 7 [C 7’ Ch7’ Cug7] 7 [C 7’ Cp77 Cug77 ‘S’] ’
:Ch?) Cug77 6g7, Ci?) Cn77 Cg7] 7 [C 7’ Cp77 Cug77 687]7
¢ 7’ Ci?) ‘S,] ’ [C 7’ Cf?) 6u77 Cn7] 7 [617] ,

l V15 := concat(‘ ’,

{ :617] ’ [C 7’ ﬁh7’ Cug7] 7 [6 p7’ Cug77 ‘S’] 7

:61,177 Cug77 6g7, Ci?) Cn77 Cg7] 7 [C p77 Cug7, 687] 7
¢ 7’ 6177 ‘S’] ’ [C 7’ Cf?) Cu7’ Cn7] 7 [617] ,
¢ 77 Cm77 Ca77 Ck77 ﬁe7] 7 [C p7’ Cu77 Cn77 687]}



Byte-pair encoding: example

Required: Repeat until V=N
e Documents D
e Desired vocabulary size N (greater than chars in D) D — { -‘i’] , [‘ hug’] 7 [‘ pugs’] ,
Algorithm: :
¢ N BA B SN B ¢ 9
® Pre-tokenize D by splitting into words (split before - hug , &, 1, 11, '8 ] ) [ pugs ] )
whitespace/punctuation Y6l ) L A o B 9 (29
e ) | C L ] [
e Initialize V as the set of characters in D _
Y Y a1, 0T TERRY daaay (o
e Convert D into a list of tokens (characters) -, In, a, k; € ] 7[ P, uUn., S ]}
e WhileVI< N
TLZ:|V‘—|—1 I (T RS RSN A o BERNASNE BES I BETLE RS (N0 RSN SNNS NN R RS
° Let V_{ 7avevf7g7h717k7m7n7p7s7u7

e Get counts of all bigrams in D R o o e o ,
e For the most frequent bigram Yi» V3 (breaking ug, 'p, hug , pug, pugs, ul, hug }7

ties arbitrarily) |V| — 9()
o | ot Un = concat(v;, v;)
e Change all instances in D of Vi» Vjto Un

and add Un to V CHANGES FROM START



Byte-pair encoding: example

NN o ., CHANGES FROM START
D = {[], [yhug] , [* pugs].

Questions to think about: ‘hug’, ‘¢’, ‘i’, ‘n’, ‘2’|, | pugs’|,

® |s every token we made used G L ] [
in the corpus? Why or why C 'l e, k) e [T, ) Cs7)
not? D = {[7].[20] . [18] .

® How much memory (#tokens) 16,5,7,10,5], [18], (as tokens
have we saved for each 1,7,12],[1,4,19],[7], indices)
document? 1,9,2,8, 3],[15,19, 12|}

e \What would happenifyou V={1:°",2:%",3:%,4:1",5:'¢",6:‘h",7: 1,
kept adding vocabulary until 8:'k’9:'m’,10:'n’, 11 : 'p’, 12 :°s’,13 : ‘u’,
you couldn't anymore? 14 : ‘ug’,15: ¢ p’, 16 : ‘hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’, 20 : * hug’}



Byte-pair encoding: tokenization/encoding

With this vocabulary, can you represent (or, tokenize/encode):

® “apple”?

® No, thereis no’l'in the vocabulary

® "huge”?
* Yes-[16 4] V={1:°7,2:%",3:%,4:4.,5:¢,6: W, 7:49,
¢ " huge"? 8:°k’9:'m’,10:‘n’, 11 : ‘p’,12:°s’,13 : ‘u’,
| 14 : ‘ug’, 15 : * p’, 16 : “hug’, 17 : * pug’, 18 : ° ’
o Ves-[18. 4] ug p ug pug pugs

19 : ‘un’, 20 : * hug’
® “hugest”? 8

® No, thereis no 't' in the vocabulary

® “uUnassumingness”?
® Yes-[19,2,12,12,13,9,7,10,5,10, 3,12, 12]



Byte-pair encoding: tokenization/encoding
V={1:°72:",3:%,4:4.,5:¢,6: W, 7:49,
8:°k’9:'m’,10:‘n’, 11 : ‘p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’,16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’, 20 : ¢ hug’}
® Sometimes, there may be more than one way to represent a word with the
vocabulary...

® E.g.,"hugs”"=[20,12]=[1,16,12]1=[1,6,14,12]=1[1,6,13,5, 13]
® \Which is the best representation? Why?



Byte-pair encoding: tokenization/encoding
V={1:",2:",3:%€,4:4,5:¢,6:h’,7:7,
8:°k’9:'m’,10:'n’, 11 : ‘p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’,16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’, 20 : * hug’}
Encoding algorithm
Given string S and (ordered) vocab V,
® Pretokenize D in same way as before
® Tokenize D into characters

® Perform merge rules in same order as in training until no more merges
may be done



Byte-pair encoding: tokenization/encoding
V={1:",2:",3:%€,4:4,5:¢,6:h’,7:7,
8:°k’9:'m’,10:'n’, 11 : ‘p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’,16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’,20 : ¢ hug’}

Encoding algorithm
Encode(“ hugs”)

Encode( “misshapenness”)

20, 12]

® Pretokenize D in same way as 9, 1,12,12,6, 2,
before 11, 3,10, 10, 3,12, 12]

® Tokenize D into characters

Given string S and (ordered) vocab )V

® Perform merge rules in same order
as in training until no more merges
may be done



Byte-pair encoding: decoding
V={1:7,2:a,3:%,4:1,5:¢,6: W, 7:%9,
8:°k,9:'m’,10:‘n’, 11 : p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’, 16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’, 20 : © hug’}

DeCOdlng algorlthm Encode(“ hugs”)

20, 12]
Encode(“misshapenness”) = [9,7,12,12,6, 2,
® |nitialize string S 1= ik 11, 3,10, 10, 3, 12, 12]
® Keep popping off tokens from the
front ot 1" and appending the
corresponding string to S

Given list of tokens T':

Decode(|20,12]) = “ hugs”
Decode([9,7,12,12,6,2,11, 3,10, 10, 3,12, 12])

— “misshapenness”




Byte-pair encoding: properties

® Efficientto run (greedy vs. global optimization)
® | ossless compression

® Potentially some shared representations - e.g., the token "hug” could
be used both in “"hug” and "hugging”



Weird properties of tokenizers

® [oken !|=word run run RunRun [6236, 1629, 6588, 6869]

® Spaces are part of token

17

® “run” is a different token than ” run

® Not invariant to case changes ToKeN s

® "Run” is a different token than “run”



Weird properties of tokenizers

tokenization ATEROT
® Token !=word EStreamFrame
o Spaces are part Of token NLP SolldGoldMaglkarp
y " - : N . PsyNetMessage
® "run” is a different token than * run don't -
embedreportprint
® Notinvariant to case changes victory Py
® “Run” is a different token than “run” lose oreAndOnline
. : . Co StreamerBot
® Tokenization fits statistics of your data ,
GoldMagikarp
® c.g., while these words are multiple tokens... /v externalToEVA
® These words are all 1 token in GPT-3's tokenizer! TheNitrome
TheNitromeFan
o \WVhy? . .
RandomRedditorWithNo
® Reddit usernames and certain code attributes appearead Y e

enough in the corpus to surface as its own token!

Example from https://www.lesswrong.com/posts/aPeJE8bSo6rAFol gg/solidgoldmagikarp-plus-prompt-generation



https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

Other tokenization variants



Variants: no spaces in tokens

® The way we presented BPE, we included whitespace with the following word. (E.g., ” pug”)
® Thisis most common in modern LMs o~ space

® However, in another BPE variant, you instead strip whitespace (e.g., "pug”) and add spaces
oetween words at decoding time ~no space

® This was the original BPE paper’s implementation!
® Example:

o ["I" "hug” “pugs”] -> "l hug pugs” (w/out whitespace)

o [“"," hug”, " pugs”] -> “l hug pugs” (w/ whitespace)

Original (w/ whitespace) Updated (w/out whitespace)
Required: Required:
e Documents D e Documents D
e Desired vocabulary size IV (greater than chars in D) e Desired vocabulary size N (greater than chars in D)
Algorithm: Algorithm:
- Pre-tokenize D by splitting into words (split + Pre-tokenize D by splitting into words
before whitespace/punctuation) (removing whitespace)

® |nitialize V as the set of characters in D ® |nitialize V as the set of characters in D



Variants: no spaces in tokens

® For sub-word tokens, need to add “continue word” special character

/7

® E.g., forthe word “Tokenization”, it the subword tokens are “Token
and “ization”

® \V/out special character: ["Token”, "ization"] -> “Token ization”

® \\V/ special character #: ["Token”, "#ization”] -> Tokenization”

® \When decoding, it does not have special character add a space

® Example:
‘ [Illlll Il‘ill’ II#EkeII II ll Ilhugll ”pug”, II#L II] > II| ‘Ike _to hug pugs




Variants: no spaces in tokens

® | oses some whitespace information (lossy compression!)

Il|

® [£.g., Tokenize("l eat cake.”) == Tokenize(

® Especially problematic for code (e.g., Python) - why?

tokenizer = AutoTokenizer.from_pretrained("openai-gpt")
tokens = tokenizer.encode('"i eat cake.")

print(tokens)

print(tokenizer.decode(tokens))

tokens = tokenizer.encode(" i eat cake
print(tokens)

print(tokenizer.decode(tokens))

 0.4s

(249, 2425, 5409, 239]
1 eat cake.
(249, 2425, 5409, 239]
1 eat cake.

eat cake ")

(Example using
GPT's tokenizer,
which does not
include spaces in
the token)



Variants: no pre-tokenization

® |n the variant we proposed, we start by splitting into words
® This guarantees that each token will be no longer than one wora

® However, this does not work so well for character-based languages.
Why?



Variants: no pre-tokenization

® |nstead, we could not pre-tokenize, and treat the entire document or
sentence as a single list of tokens

® Allows for tokens to span multiple words/characters

® Sometimes called SentencePiece tokenization* (Kudo, 2018)

* (not to be confused with the

SentencePiece library, which Paper: https:/arxiv.org/abs/1808.06226
is an implementation of many Library: https://github.com/gooqgle/sentencepiece

kinds of tokenization)

Original (w/ pre-tokenization) Updated (w/out pre-tokenization)
Required: Required:
® Documents D ® Documents D

® Desired vocabulary size IV (greater than chars in D) e Desired vocabulary size N (greater than chars in D)

Algorithm: Algorithm:

- Pre-tokenize D by splitting into words

| | | + Do not pre-tokenize D
(split before whitespace/punctuation) - |
e Initialize V as the set of characters in D

® |nitialize V as the set of characters in D , _
® (~AN\/art 7) ntA A lict Af tAlane (charactare)


https://arxiv.org/abs/1808.06226
https://github.com/google/sentencepiece

Variants: no pre-tokenization

® Allows sequences of words/characters to become tokens

SentencePiece paper example in Japanese:
https://arxiv.org/pdf/1808.06226.pdf

o Raw text: [Z AIZH ISR, 1 (Hello world.)
e Tokenized: [Z AIZH X [THFL ]

Jurassic-1 model example in English:
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6 jurassic tech paper.pdf

Q: What is the most successful film to date?

A: The most successful film to date is "The Lord of the Rings: The Fellowship of the Ring".
Lord of the Rings  %8.47
Matrix %7.65
Avengers %5.86

Lian King %5.73


https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://arxiv.org/pdf/1808.06226.pdf

Variants: byte-based

® Originally, we presented BPE as dealing with characters as the smallest unit
® However, there are many characters - especially if you want to support:
® character-based languages (e.g., Chinese has >100k characters!)

® non-alphanumeric characters like emojis (Unicode 15 has ~150k

characters!) *Only 256 bytes!
® |nstead, can initialize tokens as set of bytes! (e.g., with UTF-8%) Each Unicode
Original (w/ characters) Modified (w/ bytes) char is 1-4 bytes
Required: Required:
e Documents D e Documents D
e Desired vocabulary size IN (greater than chars in D) e Desired vocabulary size IV (greater than chars in D)
Algorithm: Algorithm:
e Pre-tokenize D by splitting into words (split before e Pre-tokenize D by splitting into words (split before
whitespace/punctuation) whitespace/punctuation)
- Initialize V as the set of characters in D + Initialize V as the set of bytes in D
- Convert D into a list of tokens (characters) + Convert D into a list of tokens (bytes)

o WhilelV]< N o WhilelV]< N



Variants: byte-based

While character-based GPT tokenizer The Byte-based GPT-2 tokenizer
fails on emojis and Japanese... succeeds!

gpt_tokenizer = AutoTokenizer.from_pretrained gpt2_tokenizer = AutoTokenizer.from pretrained("gpt2")
tokens = gpt_tokenizer.encode('@®") tokens = gpt2_tokenizer.encode('@')

print|(tokens) print(tokens)

print(gpt_tokenizer.decode(tokens) ) print(gpt2_tokenizer.decode(tokens))

tokens = gpt_tokenizer.encode('CAJCHEE") tokens = gpt2_tokenizer.encode('CAlCH(E")
print(tokens) print(tokens)

print(gpt_tokenizer.decode(tokens)) print(gpt2_tokenizer.decode(tokens))
0.7s v 0.bs

0] 147249, 224]

<unk> A

0, @, 0, 0, 0] 146036, 22174, 28618, 2515, 94, 31676}
<unk><unk><unk><unk><unk> B




Variants: VWordPiece objective

® To merge, we selected the bigram with highest
frequency p(Uz’, Uj)
® This is the same as bigram with highest probability!

Modified (Word Piece)

® |nstead, we could choose the bigram which woula
maximize the likelihood of the data after the
merge is made (also called WordPiece!)

+ For the bigram that would

Original (BPE) maximize likelihood of the training
data once the change is made i Y;
- For the most frequent bigram (breaking ties arbitrarily)
vi; V5 (breaking ties arbitrarily) (Same as bigram which maximizes
(Sam as bigram which p(vi, v;)

maximizes - P(Vi; ;) ) p(vi)p(v;j) )



Variants: VWordPiece objective
® BPE: the bigram with highest frequency/highest probability ~ P(vi, ;)

® \WordPiece: bigram which maximizes the likelihood of the p(vi, ;)

data after the merge is made p(vi)p(v;)

® Maximizes the probability of the bigram, normalized by the
orobability of the unigrams



Variants: VWordPiece encoding

At inference time, instead of applying the merge rules in order, tokens are
selected left-to-right greedily:

Encoding algorithm

Given string S and (unordered) vocab V,

o Initialize list of tokens 1 = ]

e While len(s) > 0.
® Find longest token ti that matches the beginning of S
o letl =T+ [t

® Pop corresponding vocab Vi off of front of S
® Return



Variants: unigram objective

® BPE starts with a small vocabulary (characters) and builds up until the
desired vocabulary size N

® The Unigram tokenization algorithm starts with a large vocabulary (all
sub-word substrings) and throws away tokens until we reach size N



Examples of LLMs and their tokenizers

Model/Tokenizer Objective Spaces part of token? Pre-tokenization Smallest unit

GPT Character-level

GPT-2/3/4, ChatGPT,

Llama(2), Falcon, ... BPE Yes Yes Byte-level

No. “SentencePiece” -

Jurassic BPE Yes treat whitespace like Byte-level
char
Bert, DistilBert,
Electra WordPiece No Yes Character-level

No. “SentencePiece” -
Unigram Yes treat whitespace like Character-level
char”

TS5, ALBERT, XLNet,
Marian

“*For non-English languages



Next lecture: Recurrent neural networks

® ® >
—L ot 1
A | % 0 A


http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

