

COMP 3361 Natural Language Processing

Lecture 4: Word Embeddings

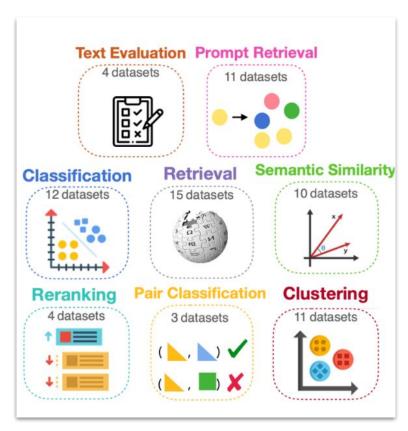
Spring 2024

Many materials from CS224n@Stanford and COS484@Princeton with special thanks!

Lecture plan

- Recap of text classification
- Why word embeddings?
- What are word embeddings?
- Word vectors and word2vec

Why word embeddings?



Text embeddings for retrieval

	Tao Yu who is the president of argentina? 26/01/2024, 03:02	2:50
-	update in September 2021, the President of Argentina is Alberto hat political positions can change, so it's always a good idea to th the latest sources. 26/01/2024, 03:02:50	

Language models without retrieval

Text embeddings for retrieval

who is the president of argentina?

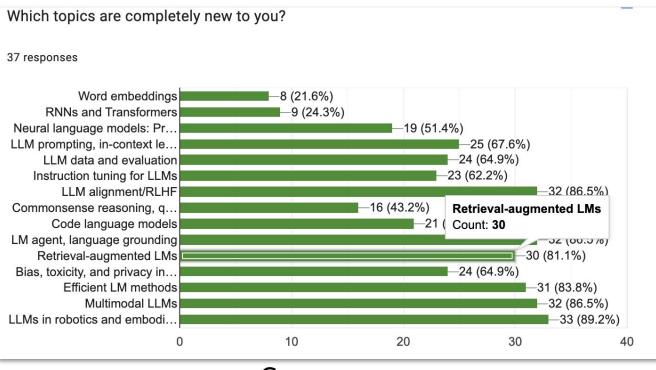
I did a quick search for more information and here's what I discovered.

The current President of Argentina as of 2024 is Javier Milei.

0070

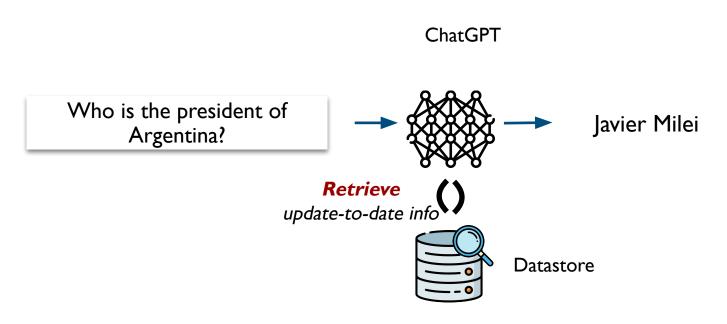
Retrieval-augmented language models

Retrieval-augmented language models



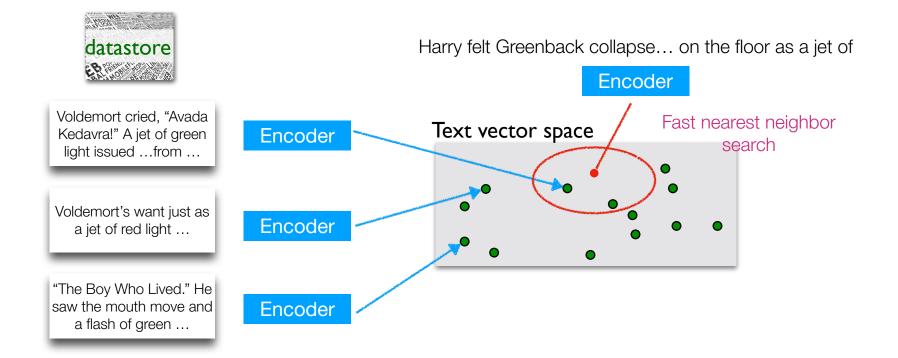
Course survey

Text embeddings for retrieval



- + external knowledge during inference
- + update-to-date info
- + domain specific or private date

Text embeddings for retrieval



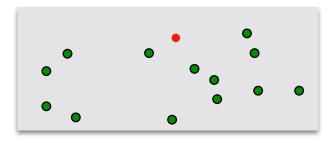
What are word embeddings?

- Word embeddings: Vector representations of word meaning
- The big idea: model of meaning focusing on similarity

Each word = a vector

$$v_{\text{cat}} = \begin{pmatrix} -0.224\\ 0.130\\ -0.290\\ 0.276 \end{pmatrix} \quad v_{\text{dog}} = \begin{pmatrix} -0.124\\ 0.430\\ -0.200\\ 0.329 \end{pmatrix}$$
$$v_{\text{the}} = \begin{pmatrix} 0.234\\ 0.266\\ 0.239\\ -0.199 \end{pmatrix} \quad v_{\text{language}} = \begin{pmatrix} 0.290\\ -0.441\\ 0.762\\ 0.982 \end{pmatrix}$$

Similar words are **"nearby"** in the vector space"



What are word embeddings?

- Which among these models is capable of producing word embeddings?
 - \circ word2vec
 - BERT
 - **T5**
 - GPT4

How do we represent words in NLP models?

n-gram models

$$P(w_1, w_2, \dots, w_n) = \prod_{i=1}^n P(w_i | w_{i-1})$$
$$P(w_i | w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V|}$$

Each word is just a string or indices w_i in the vocabulary list

cat = the 5th word in Vdog = the 10th word in Vcats = the 118th word in V

Naive Bayes

$$\hat{P}(w_i \mid c_j) = \frac{\text{Count}(w_i, c_j) + \alpha}{\sum_{w \in V} \text{Count}(w, c_j) + \alpha |V|}$$

How do we represent words in NLP models?

• Logistic regression

	Var	Definition	Value in Fig. 5.2
	x_1	$count(positive lexicon) \in doc)$	3
	x_2	$count(negative \ lexicon) \in doc)$	2
string match —	<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
	x_4	$count(1st and 2nd pronouns \in doc)$	3
	<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
	x_6	log(word count of doc)	$\ln(64) = 4.15$

What do words mean?

- Synonyms: couch/sofa, car/automobile, filbert/hazelnut
- Antonyms: dark/light, rise/fall, up/down
- Some words are not synonyms but they share some element of meaning
 - cat/dog, car/bicycle, cow/horse
- · Some words are not similar but they are related
 - coffee/cup, house/door, chef/menu
- Affective meanings or connotations:

valence: the pleasantness of the stimulusarousal: the intensity of emotion provoked by the stimulusdominance: the degree of control exerted by the stimulus

vanish	disappear	9.8
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

SimLex-999

	Valence	Arousal	Dominance
courageous	8.05	5.5	7.38
music	7.67	5.57	6.5
heartbreak	2.45	5.65	3.58
cub	6.71	3.95	4.24

(Osgood et al., 1957)

Lexical resources

WordNet Search - 3.1

- WordNet home page - Glossary - Help

Word to search for: mouse

Search WordNet

Display Options: (Select option to change) V Change

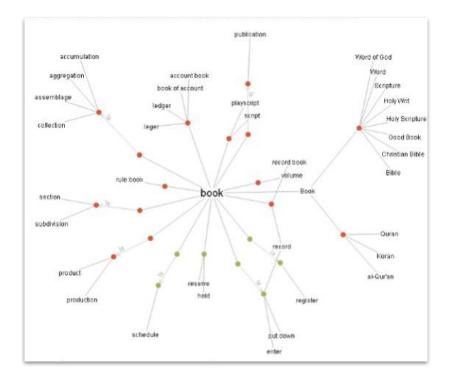
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) mouse (any of numerous small rodents typically resembling diminutive rats having pointed snouts and small ears on elongated bodies with slender usually hairless tails)
- S: (n) shiner, black eye, mouse (a swollen bruise caused by a blow to the eye)
- S: (n) mouse (person who is quiet or timid)
- <u>S:</u> (n) mouse, <u>computer mouse</u> (a hand-operated electronic device that controls the coordinates of a cursor on your computer screen as you move it around on a pad; on the bottom of the device is a ball that rolls on the surface of the pad) "a mouse takes much more room than a trackball"

Verb

- S: (v) sneak, mouse, creep, pussyfoot (to go stealthily or furtively) "..stead of sneaking around spying on the neighbor's house"
- <u>S:</u> (v) mouse (manipulate the mouse of a computer)



(-) Huge amounts of human labor to create and maintain

Lexical resources

WordNet Search - 3.1

- WordNet home page - Glossary - Help

Word to search for: Ongchoi	Search WordNet
Display Options: (Select option to change)	Change

Word to search fo	or: Ongchoi	S	earch WordNet
Display Options:	(Select option to change)	•	Change
Your search d	id not return any	re	sults.

(-) hard to keep update-to-date

- "The meaning of a word is its use in the language"
- "If A and B have almost identical environments we say that they are synonyms."
- "You shall know a word by the company it keeps"

[Wittgenstein PI 43] [Harris 1954] [Firth 1957]

Distributional hypothesis: words that occur in similar **contexts** tend to have similar meaning

J.R.Firth 1957

"You shall know a word by the company it keeps" One of the most successful ideas of modern statistical NLP!

When a word *w* appears in a text, its context is the set of words that appear nearby (within a fixed-size window).

...government debt problems turning into **banking** crises as happened in 2009... ...saying that Europe needs unified **banking** regulation to replace the hodgepodge... ...India has just given its **banking** system a shot in the arm...

These context words will represent "banking".

"Ongchoi"

- Ongchoi is delicious sautéed with garlic
- Ongchoi is superb over rice
- Ongchoi leaves with salty sauces

Q:What do you think 'Ongchoi' means?

- A) a savory snack
- B) a green vegetable
- C) an alcoholic beverage
- D) a cooking sauce

"Ongchoi"

- Ongchoi is delicious sautéed with garlic
- Ongchoi is superb over rice
- Ongchoi leaves with salty sauces

You may have seen these sentences before:

Spinach **sautéed with garlic over rice** chard stems and **leaves** are **delicious** collard greens and other **salty** leafty greens

"Ongchoi"

...

Ongchoi is a leafty green like spinach, chard or collard greens

How can do the same thing computationally?

- Count the words in the context of ongchoi
- See what other words occur in those contexts

We can represent a word's context using vectors!

Words and vectors

- First solution: Let's use **word-word co-occurrence counts** to represent the meaning of words!
- Each word is represented by the corresponding **row vector**

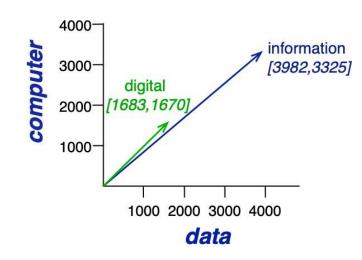
context words: 4 words to the left + 4 words to the right

is traditionally followed by	cherry	pie, a traditional dessert
often mixed, such as	strawberry	rhubarb pie. Apple pie
computer peripherals and personal	digital	assistants. These devices usually
a computer. This includes	information	available on the internet

	aardvark		computer	data	result	pie	sugar	
cherry	0	•••	2	8	9	442	25	
strawberry	0		0	0	1	60	19	
digital	0		1670	1683	85	5	4	
information	0		3325	3982	378	5	13	

Most entries are $0s \Rightarrow$ sparse vectors

Measuring similarity



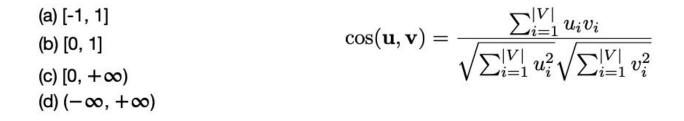
A common similarity metric: **cosine** of the angle between the two vectors (the larger, the more similar the two vectors are)

$$\cos(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$
$$\cos(\mathbf{u}, \mathbf{v}) = \frac{\sum_{i=1}^{|V|} u_i v_i}{\sqrt{\sum_{i=1}^{|V|} u_i^2} \sqrt{\sum_{i=1}^{|V|} v_i^2}}$$

Q: Why cosine similarity instead of dot product $\mathbf{u} \cdot \mathbf{v}$?

Measuring similarity

What is the range of cos(u, v) if u, v are **count vectors**?



Measuring similarity

What is the range of cos(u, v) if u, v are **count vectors**?

(a) [-1, 1]
(b) [0, 1]
(c) [0, +
$$\infty$$
)
(d) (- ∞ , + ∞)
(e) [-1, 1]
 $\cos(\mathbf{u}, \mathbf{v}) = \frac{\sum_{i=1}^{|V|} u_i v_i}{\sqrt{\sum_{i=1}^{|V|} u_i^2} \sqrt{\sum_{i=1}^{|V|} v_i^2}}$

The answer is (b). Cosine similarity ranges between -1 and 1 in general. In this model, all the values of u_i , v_i are non-negative.

Sparse vs. dense vectors

- The vectors in the word-word occurrence matrix are
 - **Long**: vocabulary size
 - **Sparse**: most are 0's

Sparse vs. dense vectors

- The vectors in the word-word occurrence matrix are
 - **Long**: vocabulary size
 - **Sparse**: most are 0's
- Alternative: we want to represent words as short (50-300 dimensional) & dense (real-valued) vectors
 - The basis for modern NLP systems

$$v_{\rm cat} = \begin{pmatrix} -0.224\\ 0.130\\ -0.290\\ 0.276 \end{pmatrix} \qquad v_{\rm dog} = \begin{pmatrix} -0.124\\ 0.430\\ -0.200\\ 0.329 \end{pmatrix}$$

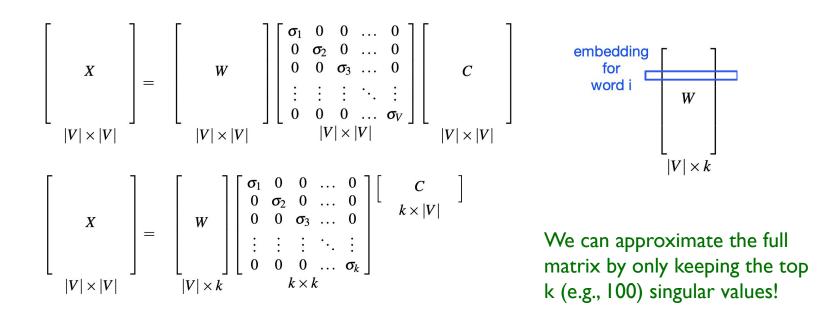
$$v_{\rm the} = \begin{pmatrix} 0.234\\ 0.266\\ 0.239\\ -0.199 \end{pmatrix} \quad v_{\rm language} = \begin{pmatrix} 0.290\\ -0.441\\ 0.762\\ 0.982 \end{pmatrix}$$

Why dense vectors?

- Short vectors are easier to use as **features** in ML systems
- Dense vectors generalize better than explicit counts (points in real space vs points in integer space)
- Sparse vectors can't capture higher-order co-occurrence
 - w_1 co-occurs with "car", w_2 co-occurs with "automobile"
 - They should be similar but they aren't because "car" and "automobile" are distinct dimensions
- In practice, they work better!

How to get short dense vectors?

• Count-based methods: Singular value decomposition (SVD) of count matrix

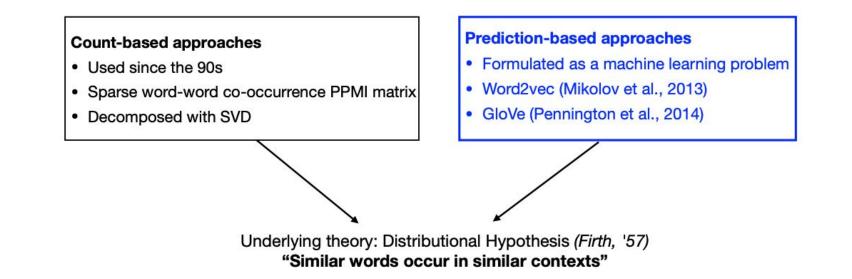


How to get short dense vectors?

- **Count-based methods**: Singular value decomposition (SVD) of count matrix
- **Prediction-based methods**:
 - Vectors are created by training a classifier to predict whether a word c ("pie") is likely to appear in the context of a word w ("cherry")
 - Examples: word2vec (Mikolov et al., 2013), Glove (Pennington et al., 2014),
 FastText (Bojanowski et al., 2017)

How to get short dense vectors?

• Goal: represent words as **short** (50-300 dimensional) & **dense** (real-valued) vectors



Word embeddings: word2vec

Word embeddings: the learning problem

- Word embeddings are learned representations from text for representing words
 - Input: a large text corpora, V, d
 - V: a pre-defined vocabulary
 - d: dimension of word vectors (e.g. 300)
 - Text corpora:
 - Wikipedia + Gigaword 5: 6B tokens
 - Twitter: 27B tokens
 - Common Crawl: 840B tokens
 - Output: $f: V \to \mathbb{R}^d$

Each word is represented by a low-dimensional (e.g., d = 300), real-valued vector Each coordinate/dimension of the vector doesn't have a particular interpretation

$$v_{\rm cat} = \begin{pmatrix} -0.224\\ 0.130\\ -0.290\\ 0.276 \end{pmatrix} \qquad v_{\rm dog} = \begin{pmatrix} -0.124\\ 0.430\\ -0.200\\ 0.329 \end{pmatrix}$$

$$v_{\rm the} = \begin{pmatrix} 0.234\\ 0.266\\ 0.239\\ -0.199 \end{pmatrix} \quad v_{\rm language} = \begin{pmatrix} 0.290\\ -0.441\\ 0.762\\ 0.982 \end{pmatrix}$$

Trained word embeddings available

- word2vec: <u>https://code.google.com/archive/p/word2vec/</u>
- GloVe: <u>https://nlp.stanford.edu/projects/glove/</u>
- FastText: <u>https://fasttext.cc/</u>

Download pre-trained word vectors

- Pre-trained word vectors. This data is made available under the <u>Public Domain Dedication and License</u> v1.0 whose full text can be found at: <u>http://www.opendatacommons.org/licenses/pddl/1.0/</u>.
 - Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
 - Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
 - Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
 - Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove.twitter.27B.zip
- Ruby <u>script</u> for preprocessing Twitter data

Differ in algorithms, text corpora, dimensions, cased/uncased... Applied to many other languages

Word embeddings

• Basic property: similar words have similar vectors

	Word	Cosine distance
	norway	0.760124
word w^* = "sweden"	denmark	0.715460
word w = sweden	finland	0.620022
·····*))	switzerland	0.588132
$rg\max_{w\in V}\cos(e(w),e(w^*))$	belgium	0.585835
$w \in v$	netherlands	0.574631
	iceland	0.562368
	estonia	0.547621
	slovenia	0.531408

cos(u, v) ranges between - I and I

Word embeddings

• Basic property: similar words have similar vectors

Nearest words to frog:

- 1. frogs
- 2. toad
- 3. litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- 7. eleutherodactylus

litoria

leptodactylidae

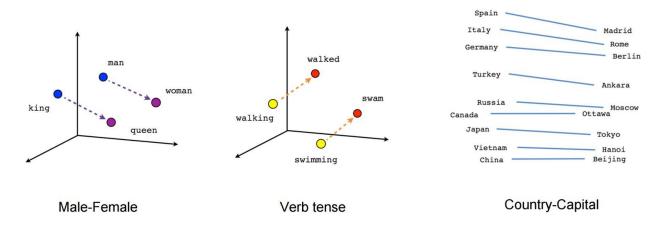
rana

eleutherodactylus

(Pennington et al, 2014): GloVe: Global Vectors for Word Representation

Word embeddings

- Basic property: similar words have similar vectors
- They have some other nice properties too!

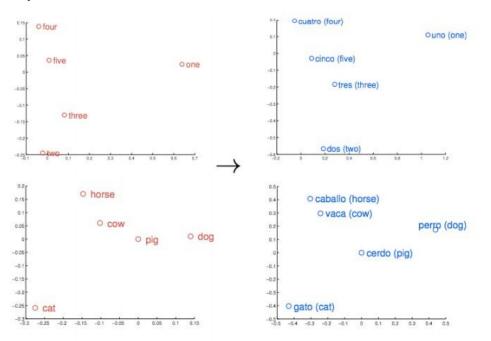


 $v_{
m man} - v_{
m woman} pprox v_{
m king} - v_{
m queen}$ $v_{
m Paris} - v_{
m France} pprox v_{
m Rome} - v_{
m Italy}$

Word analogy test: $a : a^* :: b : b^*$

Word embeddings

• They have some other nice properties too!



(Mikolov et al, 2013): Exploiting Similarities among Languages for Machine Translation

 $v(\text{cuatro}) \approx W v(\text{four})$

Embeddings reflect cultural bias

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings." In *NeurIPS*, pp. 4349-4357. 2016.

```
Ask "Paris : France :: Tokyo : x"

• x = Japan

Ask "father : doctor :: mother : x"

• x = nurse
```

Ask "man : computer programmer :: woman : x"
x = homemaker

Algorithms that use embeddings as part of e.g., hiring searches for programmers, might lead to bias in hiring

Word embeddings: the learning problem

- Word embeddings are learned representations from text for representing words
 - Input: a large text corpora, V, d
 - V: a pre-defined vocabulary
 - d: dimension of word vectors (e.g. 300)
 - Text corpora:
 - Wikipedia + Gigaword 5: 6B tokens
 - Twitter: 27B tokens
 - Common Crawl: 840B tokens
 - Output: $f: V \to \mathbb{R}^d$

Each word is represented by a low-dimensional (e.g., d = 300), real-valued vector Each coordinate/dimension of the vector doesn't have a particular interpretation

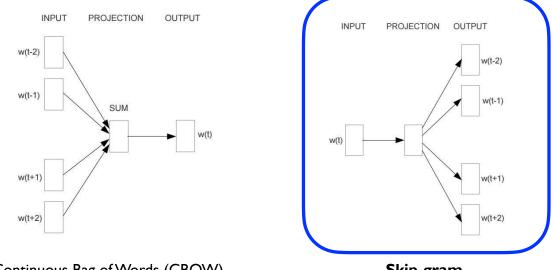
$$v_{\rm cat} = \begin{pmatrix} -0.224\\ 0.130\\ -0.290\\ 0.276 \end{pmatrix} \qquad v_{\rm dog} = \begin{pmatrix} -0.124\\ 0.430\\ -0.200\\ 0.329 \end{pmatrix}$$

$$v_{\rm the} = \begin{pmatrix} 0.234\\ 0.266\\ 0.239\\ -0.199 \end{pmatrix} \quad v_{\rm language} = \begin{pmatrix} 0.290\\ -0.441\\ 0.762\\ 0.982 \end{pmatrix}$$

word2vec

- (Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space •
- (Mikolov et al 2013b): Distributed Representations of Words and Phrases and their Compositionality •

Thomas Mikolov

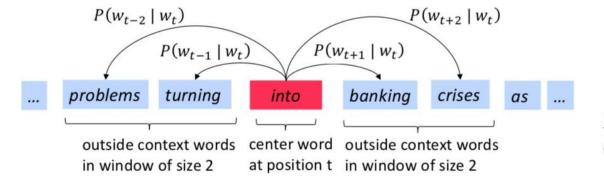


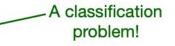
Continuous Bag of Words (CBOW)

Skip-gram

Skip-gram

- Assume that we have a large corpus $w_1, w_2, ..., w_{\tau} \in V$
- Key idea: Use each word to predict other words in its context
- Context: a fixed window of size 2m (m = 2 in the example)

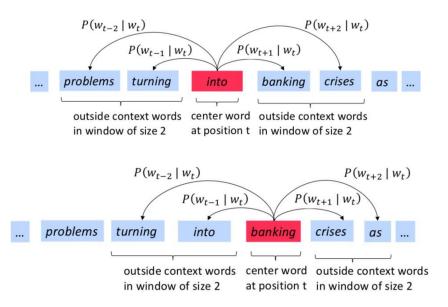




 $P(b \mid a)$ = given the center word is a, what is the probability that b is a context word?

 $P(\cdot \mid a)$ is a probability distribution defined over V: $\sum_{w \in V} P(w \mid a) = 1$

Skip-gram



Convert the training data into: (into, problems) (into, turning) (into, banking) (into, crises) (banking, turning) (banking, into) (banking, crises) (banking, as)

. . .

Our goal is to find parameters that can maximize

 $P(\text{problems} \mid \text{into}) \times P(\text{turning} \mid \text{into}) \times P(\text{banking} \mid \text{into}) \times P(\text{crises} \mid \text{into}) \times P(\text{turning} \mid \text{banking}) \times P(\text{into} \mid \text{banking}) \times P(\text{crises} \mid \text{banking}) \times P(\text{as} \mid \text{banking}) \dots$

Skip-gram: objective function

 For each position t = 1,2,...T, predict context words within context size m, given center word w_t:

$$\mathcal{L}(heta) = \prod_{t=1}^T \prod_{-m \leq j \leq m, j \neq 0} P(w_{t+j} \mid w_t; heta)$$

• It is equivalent as minimizing the (average) negative log likelihood:

$$J(\theta) = -\frac{1}{T} \log \mathcal{L}(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log P(w_{t+j} \mid w_t; \theta)$$

How to define $P(w_{t+j} | w_t; \theta)$?

Use two sets of vectors for each word in the vocabulary

$$\mathbf{u}_a \in \mathbb{R}^d$$
: vector for center word $a, \forall a \in V$
 $\mathbf{v}_b \in \mathbb{R}^d$: vector for context word $b, \forall b \in V$

Use inner product u_a · v_b to measure how likely word a appears with context word b

Softmax we have seen in multinomial logistic regression!

$$P(w_{t+j} \mid w_t) = \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

Recall that $P(\cdot | a)$ is a probability distribution defined over V...

Skip-gram: objective function

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

- In this formulation, we don't care about the classification task itself like we do for the logistic regression model we saw previously.
- The key point is that the parameters used to optimize this training objective— when the training corpus is large enough—can give us very good representations of words (following the principle of distributional hypothesis)!

How many parameters in this model?

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

How many parameters does this model have (i.e. what is size of θ)?

(a) d|V|
(b) 2d|V|
(c) 2m|V|
(d) 2md|V|

d = dimension of each vector

How many parameters in this model?

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

How many parameters does this model have (i.e. what is size of θ)?

(a) d|V| (b) 2d|V| (c) 2m|V| (d) 2md|V|

d = dimension of each vector

The answer is (b). Each word has two d-dimensional vectors, so it is $2 \times |V| \times d$.

word2vec formulation

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

Q: Why do we need two vectors for each word instead of one?

Q: Which set of vectors are used as word embeddings?

word2vec formulation

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

Q: Why do we need two vectors for each word instead of one?

A: because one word is not likely to appear in its own context window, e.g., $P(\text{dog} \mid \text{dog})$ should be low. If we use one set of vectors only, it essentially needs to minimize $\mathbf{u}_{\text{dog}} \cdot \mathbf{u}_{\text{dog}}$.

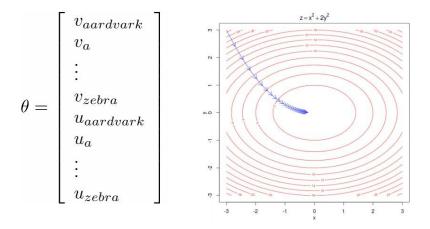
Q: Which set of vectors are used as word embeddings?

A: This is an empirical question. Typically just \mathbf{u}_{w} but you can also concatenate the two vectors..

How to train this model?

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

- To train such a model, we need to compute the vector gradient ∇_θJ(θ) =?
- Again, θ represents all 2d | V | model parameters, in one vector.



Let's compute gradients for word2vec

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

Consider one pair of center/context words (t, c):

$$y = -\log\left(rac{\exp(\mathbf{u}_t\cdot\mathbf{v}_c)}{\sum_{k\in V}\exp(\mathbf{u}_t\cdot\mathbf{v}_k)}
ight)$$

We need to compute the gradient of y with respect to

$$\mathbf{u}_t$$
 and $\mathbf{v}_k, \forall k \in V$

Let's compute gradients for word2vec

$$y = -\log\left(rac{\exp(\mathbf{u}_t\cdot\mathbf{v}_c)}{\sum_{k\in V}\exp(\mathbf{u}_t\cdot\mathbf{v}_k)}
ight)$$

$$egin{aligned} y &= -\log(\exp(\mathbf{u}_t \cdot \mathbf{v}_c)) + \log(\sum_{k \in V} \exp(\mathbf{u}_t \cdot \mathbf{v}_k)) \ &= -\mathbf{u}_t \cdot \mathbf{v}_c + \log(\sum_{k \in V} \exp(\mathbf{u}_t \cdot \mathbf{v}_k)) \end{aligned}$$

$$\begin{split} \frac{\partial y}{\partial \mathbf{u}_t} &= \frac{\partial (-\mathbf{u}_t \cdot \mathbf{v}_c)}{\partial \mathbf{u}_t} + \frac{\partial (\log \sum_{k \in V} \exp(\mathbf{u}_t \cdot \mathbf{v}_k))}{\partial \mathbf{u}_t} \\ &= -\mathbf{v}_c + \frac{\frac{\partial \sum_{k \in V} \exp(\mathbf{u}_t \cdot \mathbf{v}_k)}{\partial \mathbf{u}_t}}{\sum_{k \in V} \exp(\mathbf{u}_t \cdot \mathbf{v}_k)} \\ &= -\mathbf{v}_c + \frac{\sum_{k \in V} \exp(\mathbf{u}_t \cdot \mathbf{v}_k) \cdot \mathbf{v}_k}{\sum_{k \in V} \exp(\mathbf{u}_t \cdot \mathbf{v}_k)} \\ &= -\mathbf{v}_c + \sum_{k \in V} \frac{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}{\sum_{k' \in V} \exp(\mathbf{u}_t \cdot \mathbf{v}_{k'})} \mathbf{v}_k \\ &= -\mathbf{v}_c + \sum_{k \in V} \frac{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}{\sum_{k' \in V} \exp(\mathbf{u}_t \cdot \mathbf{v}_{k'})} \mathbf{v}_k \end{split}$$

Recall that

$$P(w_{t+j} \mid w_t) = rac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

Let's compute gradients for word2vec

What about context vectors?

$$\frac{\partial y}{\partial \mathbf{v}_k} = \begin{cases} (P(k \mid t) - 1) \, \mathbf{u}_t & k = c \\ P(k \mid t) \mathbf{u}_t & k \neq c \end{cases} \qquad \qquad y = -\log\left(\frac{\exp(\mathbf{u}_t \cdot \mathbf{v}_c)}{\sum_{k \in V} \exp(\mathbf{u}_t \cdot \mathbf{v}_k)}\right)$$

Overall algorithm

- Input: text corpus, embedding size d, vocabulary V, context size m
- Initialize $\mathbf{u}_i, \mathbf{v}_i$ randomly $\forall i \in V$
- Run through the training corpus and for each training instance (t, c):

• Update
$$\mathbf{u}_t \leftarrow \mathbf{u}_t - \eta \frac{\partial y}{\partial \mathbf{u}_t}$$
 $\frac{\partial y}{\partial \mathbf{u}_t} = -\mathbf{v}_c + \sum_{k \in V} P(k \mid t) \mathbf{v}_k$
• Update $\mathbf{v}_k \leftarrow \mathbf{v}_k - \eta \frac{\partial y}{\partial \mathbf{v}_k}, \forall k \in V$ $\frac{\partial y}{\partial \mathbf{v}_k} = \begin{cases} (P(k \mid t) - 1) \mathbf{u}_t & k = c \\ P(k \mid t) \mathbf{u}_t & k \neq c \end{cases}$

Q: Can you think of any issues with this algorithm?

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, c), you need to update \mathbf{v}_k with all the words in the vocabulary! This is very expensive computationally.

$$\frac{\partial y}{\partial \mathbf{u}_t} = -\mathbf{v}_c + \sum_{k \in V} P(k \mid t) \mathbf{v}_k \qquad \qquad \frac{\partial y}{\partial \mathbf{v}_k} = \begin{cases} (P(k \mid t) - 1) \, \mathbf{u}_t & k = c \\ P(k \mid t) \mathbf{u}_t & k \neq c \end{cases}$$

Negative sampling: instead of considering all the words in V, let's randomly sample K (5-20) negative examples.

softmax:
$$y = -\log\left(\frac{\exp(\mathbf{u}_t \cdot \mathbf{v}_c)}{\sum_{k \in V} \exp(\mathbf{u}_t \cdot \mathbf{v}_k)}\right)$$

Negative sampling:
$$y = -\log(\sigma(\mathbf{u}_t \cdot \mathbf{v}_c)) - \sum_{i=1}^{K} \mathbb{E}_{j \sim P(w)} \log(\sigma(-\mathbf{u}_t \cdot \mathbf{v}_j))$$

Skip-gram with negative sampling (SGNS)

Key idea: Convert the |V|-way classification into a set of binary classification tasks.

Every time we get a pair of words (t, c), we don't predict c among all the words in the vocabulary. Instead, we predict (t, c) is a positive pair, and (t, c') is a negative pair for a small number of sampled c'.

positive examples +		negative examples -				K
t	c	t	c	t	c	$y = -\log(\sigma(\mathbf{u}_t \cdot \mathbf{v}_c)) - \sum \mathbb{E}_{j \sim P(w)} \log(\sigma(-\mathbf{u}_t \cdot \mathbf{v}_j))$
apricot	tablespoon	apricot	aardvark	apricot	seven	i=1
apricot	of	apricot	my	apricot	forever	P(w): sampling according to the frequency of words
apricot	jam	apricot	where	apricot	dear	
apricot		apricot	coaxial	apricot	if	

Similar to **binary logistic regression**, but we need to optimize \mathbf{u} and \mathbf{v} together.

$$P(y=1 \mid t,c) = \sigma(\mathbf{u}_t \cdot \mathbf{v}_c) \qquad p(y=0 \mid t,c') = 1 - \sigma(\mathbf{u}_t \cdot \mathbf{v}_{c'}) = \sigma(-\mathbf{u}_t \cdot \mathbf{v}_{c'})$$

Understanding SGNS

$$y = -\log(\sigma(\mathbf{u}_t \cdot \mathbf{v}_c)) - \sum_{i=1}^{K} \mathbb{E}_{j \sim P(w)} \log(\sigma(-\mathbf{u}_t \cdot \mathbf{v}_j))$$

In skip-gram with negative sampling (SGNS), how many parameters need to be updated in θ for every (*t*, *c*) pair?

- (a) *Kd*
- (b) 2*Kd*
- (c) (K+1)d
- (d) (K+2)d

Understanding SGNS

$$y = -\log(\sigma(\mathbf{u}_t \cdot \mathbf{v}_c)) - \sum_{i=1}^{K} \mathbb{E}_{j \sim P(w)} \log(\sigma(-\mathbf{u}_t \cdot \mathbf{v}_j))$$

In skip-gram with negative sampling (SGNS), how many parameters need to be updated in θ for every (*t*, *c*) pair?

(a) *Kd*

(b) 2*Kd*

(c) (K+1)d

(d) (K+2)d

The answer is (d). We need to calculate gradients with respect to \mathbf{u}_t and (K + 1) \mathbf{v}_i (one positive and K negatives).

L5:Word Embeddings (cont'd)