# COMP 336I Natural Language Processing 

Lecture 2: Language Modeling n-gram Language Models

Spring 2024

## Announcements

- Join the course Slack workspace https://join.slack.com/t/slack-fdv4728/shared invite/zt-2asgddrOh-6wIXbRndwKhBw2IX2~ZrJQ
- Assignment I will be out this weekend


## Lecture plan

- Introduction to language models
- N -gram language models
- Language model evaluation
- Smoothing methods


## ChatGPT is a powerful language model!



## Let's play a game!

This year, I am going to do an internship in
Queen Mary Hospital, HSBC, Google, Amazon

Majoring in computer science, this year, I am going to do an internship in

## Google

Q how is the weather in
how is the weather in chicago
a $25^{\circ} \mathrm{F}_{\text {Thu-Chicago, IL }}$
Q how is the weather in boston
Q how is the weather in spanish
a how is the weather in new york
Q how is the weather in florida
Q how is the weather in memphis tn
Q how is the weather in atlanta georgia
Q how is the weather in california
Q how is the weather in texas

## ChatGPT auto-completes your prompt

Q\&A
Answers Generation Conversation

Answer questions based on existing knowledge

## Promp

I am a highly intelligent question answering bot. If you ask mea question that is rooted in truth, I will give you the answer. If you ask me question that is nonsense, trickery, or has no clear answer, I will respond with "Unknown"

Q: What is human life expectancy in the United States? A: Human life expectancy in the United States is 78 years.

Q: Who was president of the United States in 1955?
A: Dwight D. Eisenhower was president of the United States in 1955

Q: Which party did he belong to?
A: He belonged to the Republican Party.
Q : What is the square root of banana?
A: Unknown
Q. How does a telescope work?

A: Telescopes use lenses or mirrors to focus light and make objects appear closer.

Q: Where were the 1992 Olympics held?
A: The 1992 Olympics were held in Barcelona, Spain.
Q: How many squigs are in a bonk
A: Unknown
Q: Where is the Valley of Kings?

```
Sample response
The Valley of Kings is located in Luxor, Egypt.
```


## ChatGPT auto-completes your prompt

## $V$ <br> TL;DR summarization <br> Transformation Generation

Summarize text by adding a ' $t$ l;dr:' to the end of a text passage. It shows that the API understands how to perform a number of tasks with no instructions.

## Prompt

A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if he star was especially metal-rich.[1] Neutron stars are the smallest and densest stellar objects, excluding black holes and hypothetical white holes, quark stars, and strange stars.[2] Neutron stars have a radius on the order of 10 kilometres ( 6.2 mi ) and a mass of about 1.4 solar masses [3] They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.

Ti;dr

## Sample response

A neutron star is the collapsed core of a massive supergiant star. These ultra-dense objects are incredibly fascinating due to their strange properties and their potential for phenomena such as extreme
gravitational forces and a strong magnetic field.

## Python bug fixer <br> Code Generation

There's a number of ways of structuring the prompt for checking for bugs. Here we add a comment suggesting that source code is buggy, and then ask codex to generate a fixed code

## Prompt

\#\#\#\#\# Fix bugs in the below function

## \#\#\# Buggy Pytho

import Random
$a=$ random.randint $(1,12)$
$\mathrm{b}=$ random.randint $(1,12)$
for $i$ in range(10):
question = "What is "+a+" $x$ "+b+"?"
answer = input(question)
If answer $=a^{*} b$
print (Well done!)
else:
print("No.")
\#\#\# Fixed Python

Sample response

## mport random

$\mathrm{a}=$ random.randint $(1,12)$
$\mathrm{b}=$ random.randint $(1,12)$
for 1 in range (10):
question $=$ "What is "+str(a)+" $x$ " $+\operatorname{str}(\mathrm{b})+$ "?
answer $=$ input(question)
If answer $==\operatorname{str}\left(a^{*} \mathrm{~b}\right)$ :
print ("Well done!")

## Generative language model

I am
going
to
do
an
internship
Google


## Making the dice



| I | Belief |
| :--- | :--- |
| 2 | Evidence |
| 3 | Reason |
| 4 | Claim |
| 5 | Think |
| 6 | Justify |
| 7 | Also |
|  | ... |
| 99 | Therefore |
| 100 | Google |
|  | Vocabulary |

## Generative language model



## Generative language model


am

## Generative language model


going

Generative language model

I am going to do an internship in Google


Neuralize the dice!



Neural Networks (e.g. Transformers)


Neural network language models

I am going to do an internship in Google


## Language models, and how to build it



Dice, and how do we roll them (probabilistic model)
$p(\boldsymbol{x})=\prod_{i} p\left(x_{i} \mid \boldsymbol{x}_{<i}\right)$


Transformers, neural networks and many others
(powerful functions)


## First problem — the language modeling problem

Given a finite vocabulary

$$
\mathcal{V}=\{\text { belief, evidence, reason, claim, . . . Google, therefore }\}
$$

We have a set of sentences
<s> I am going to an internship in Google </s>
<s> an internship in Google </s>
<s> I am going going </s>
<s> Google is am </s>
<s> internship is going </s>
Can we learn a "model" for this "generative process"? We need to "learn" a probability distribution:

$$
p\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

## The language modeling problem

Given a training sample of example sentences, we need to "learn" a probabilistic model that assigns probabilities to every possible string:
$\mathrm{p}(<\mathrm{s}\rangle \mathrm{I}$ am going to an internship in Google $</ \mathrm{s}>$ ) $=10^{-12}$
$\mathrm{p}(\langle\mathrm{s}\rangle$ an internship in Google $</ \mathrm{s}>)=10^{-8}$
$\mathrm{p}(<\mathrm{s}>\mid \mathrm{Iam}$ going going $</ \mathrm{s}>)=10^{-15}$

## What is a language model?

- A probabilistic model of a sequence of words $x_{1}, x_{2}, \ldots x_{n}$ A language model consists of
- A finite set $\mathcal{V}=\{$ the, dog, laughs, saw, barks, cat, $\ldots\}$


## What is a language model?

- A probabilistic model of a sequence of words $x_{1}, x_{2}, \ldots x_{n}$

A language model consists of

- A finite set $\mathcal{V}=\{$ the, dog, laughs, saw, barks, cat, $\ldots\}$

A sentence in the language is a sequence of words

$$
x_{1}, x_{2}, \ldots x_{n}
$$

For example
the dog barks STOP
the cat saw the dog STOP
Define $\mathcal{V}^{\dagger}$ o be the set of all sentences with the vocabulary $\mathcal{V}$

## What is a language model?

- A probabilistic model of a sequence of words $x_{1}, x_{2}, \ldots x_{n}$

A language model consists of

- A finite set $\mathcal{V}=\{$ the, dog, laughs, saw, barks, cat, $\ldots\}$
- A probability distribution over sequences of words $p\left(x_{1}, x_{2}, \ldots x_{n}\right)$ such that:

1. For any $\left\langle x_{1} \ldots x_{n}\right\rangle \in \mathcal{V}^{\dagger}, p\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0$
2. In addition, $\sum_{\left\langle x_{1} \ldots x_{n}\right\rangle \in \mathcal{V}^{\dagger}} p\left(x_{1}, x_{2}, \ldots x_{n}\right)=1$

## Assign a probability to a sentence

Application of language models：
$P($（＂am going to school＂）$>P$（＂I are going to school＂）
Grammar Checking

I had some coffee this morning．
$P$（＂我今早喝了一些咖啡＂）$>P$（＂我今早吃了一些咖啡＂）
$P$（＂Can we put an elephant into the refrigerator？No，we can＇t．＂）＞P（＂Can we put an elephant into the refrigerator？

Machine translation Yes，we can．＂）

## N -gram language models



## A (very bad) language model

Number of times the sentence $x_{1} \ldots x_{n}$ is seen in the training corpus

$$
c\left(x_{1} \ldots x_{n}\right)
$$

Total number of sentences in the training corpus $N$

$$
p\left(x_{1} \ldots x_{n}\right)=\frac{c\left(x_{1} \ldots x_{n}\right)}{N}
$$

Why this is very bad?

## Markov models

Consider a sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$, each take any value in $\mathcal{V}$
The joint probability of a sentence is

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\
&= P\left(X_{1}=x_{1}\right) \prod_{i=2}^{n} P\left(X_{i}=x_{i} \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}\right) \\
& \text { Chain rule }
\end{aligned}
$$

## Markov models

Consider a sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$, each take any value in $\mathcal{V}$
The joint probability of a sentence is

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\
= & P\left(X_{1}=x_{1}\right) \prod_{i=2}^{n} P\left(X_{i}=x_{i} \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}\right)
\end{aligned}
$$

Chain rule

$$
\begin{array}{r}
=P\left(X_{1}=x_{1}\right) \prod_{i=2}^{n} P\left(X_{i}=x_{i} \mid X_{i-1}=x_{i-1}\right) \\
\quad \text { First-order Markov Assumption }
\end{array}
$$

- Use only the recent past to predict the next word
- Reduces the number of estimated parameters in exchange for modeling capacity


## Trigram language models

A trigram language model consists of a finite set $\mathcal{V}$, and a parameter $q(w \mid u, v)$
For each trigram $u, v, w$, such that $w \in \mathcal{V} \cup\{\mathrm{STOP}\}, u, v \in \mathcal{V} \cup\{*\}$.
$q(w \mid u, v)$ can be interpreted as the probability of seeing the word $w$ immediately after the bigram $(u, v)$.

For any sentence $x_{1} \ldots x_{n}$, where $x_{i} \in \mathcal{V}$ for $i=1 \ldots(n-1)$, and $x_{n}=$ STOP

$$
p\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} q\left(x_{i} \mid x_{i-2}, x_{i-1}\right)
$$

where we define $x_{0}=x_{-1}=*$

## Trigram language models

For example, for the sentence:
the dog barks STOP
$p($ the $\operatorname{dog}$ barks STOP $)=q\left(\right.$ the $\left.\left.\right|^{*},{ }^{*}\right) \times q(\operatorname{dog} \mid *$, the $) \times q($ barks $\mid$ the, $\operatorname{dog}) \times q($ STOP $\mid \operatorname{dog}$, barks $)$

Problem solved? How can we find $q(w \mid u, v)$

Parameters (of the model)
How many parameters?

$$
q(w \mid u, v)
$$

How to "estimate" them from training data?

## Trigram language models

Parameters (of the model)

$$
q(w \mid u, v)
$$

How many parameters?
$|\mathcal{V}|^{3}$

How to "estimate" them from training data?

$$
\begin{aligned}
q(w \mid u, v) & =\frac{c(u, v, w)}{c(u, v)} \\
q(\text { barks } \mid \text { the }, \operatorname{dog}) & =\frac{c(\text { the }, \text { dog, barks })}{c(\text { the }, \text { dog })}
\end{aligned}
$$

# Generating from a trigram language model 

I am going


$$
q \text { ("going"|"I am") grong going }
$$

[^0]
## Trigram language models

How to "estimate" them from training data?
$q(w \mid u, v)=\frac{c(u, v, w)}{c(u, v)}$
$q($ barks $\mid$ the, $\operatorname{dog})=\frac{c(\text { the }, \text { dog, barks })}{c(\text { the }, \operatorname{dog})}$

N-gram counts!

Q pasta,hamburger

1950-2000 ~ English (2019) ~ Case-Insensitive Smoothing ~

Pasta v.s. Hamburger (Google Books Ngram Viewer)

## Sparse data problems

Maximum likelihood estimate:

$$
\begin{aligned}
q(w \mid u, v) & =\frac{c(u, v, w)}{c(u, v)} \\
q(\text { barks } \mid \text { the }, \operatorname{dog}) & =\frac{c(\text { the }, \text { dog, barks })}{c(\text { the }, \text { dog })}
\end{aligned}
$$

$|\mathcal{V}|^{3} \quad$ Say vocabulary size is 20000 . We have $8 * 10^{12}$ parameters!!

## Evaluating language models



## Evaluating language models

- Directly optimized for downstream applications
- higher task accuracy $\rightarrow$ better model
- Expensive, time consuming
- Hard to optimize downstream objective (indirect feedback)


## Evaluating language models: perplexity


$x^{(i)}$ the cat laughs STOP
$x^{(i+1)}$ the dog laughs at the cat STOP
development (dev) set (held-out data)

We can compute the probability it assigns to the entire set of test sentences

$$
\prod_{i=1}^{m} p\left(x^{(i)}\right)
$$

The higher this quantity is, the better the language model is at modeling unseen sentences.

## Evaluating language models: perplexity

The higher this quantity is, the better the language model is at modeling unseen sentences.

$$
\prod_{i=1}^{m} p\left(x^{(i)}\right)
$$

Perplexity on the test corpus is derived as a direction transformation of this.

$$
\begin{gathered}
\mathrm{ppl}=2^{-l} \\
l=\frac{1}{M} \sum_{i=1}^{m} \log _{2} p\left(x^{(i)}\right)
\end{gathered}
$$

$M$ is the total length of the sentences in the test corpus.
What if the model estimate $q(w \mid u, v)=0$ and the trigram appears in the dataset?

## Wait, why we love this number in the first place?

Let the model predicts

$$
\begin{aligned}
& q(w \mid u, v)=1 / N \\
& l=\frac{1}{M} \sum_{i=1}^{m} \log _{2} p\left(x^{(i)}\right) \\
& \mathrm{ppl}=2^{-l}=N
\end{aligned}
$$

A uniform probability model - The perplexity is equal to the vocabulary size!
Perplexity can be thought of as the effective vocabulary size under the model! For example, the perplexity of the model is $\mathbf{I 2 0}$ (even though the vocabulary size is say 10,000 ), then this is roughly equivalent to having an effective vocabulary of I 20 .

Measure of model's uncertainty about next word (aka `average branching factor') branching factor = \# of possible words following any word

## Generalization of n-gram language models

- Not all n-grams in the test set will be observed in training data
- Test corpus might have some that have zero probability under our model


## Smoothing for language models

If the model estimate $q(w \mid u, v)=0$ and the trigram appears in the test data, ppl goes up to infinity.

When we have sparse statistics:
$\mathrm{P}(\mathrm{w} \mid$ denied the $)$
3 allegations
2 reports
I claims
I request


7 total

Steal probability mass to generalize better:
$P(w \mid$ denied the $)$
2.5 allegations
1.5 reports
0.5 claims
0.5 request

2 other

7 total


## Add-one (Laplace) smoothing

Considering a bigram model here, pretend we saw each word one more time than we did.

MLE estimate:

$$
q_{\mathrm{MLE}}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

Add-one smoothing:

$$
q_{\text {Laplace }}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)+1}{c\left(w_{i-1}\right)+|\mathcal{V}|}
$$

## Linear interpolation (stupid backoff)

Trigram Model, Bigram Model, Unigram Model
Trigram maximum-likelihood estimate: $\quad q\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\frac{c\left(w_{i-2}, w_{i-1}, w_{i}\right)}{c\left(w_{i-2}, w_{i-1}\right)}$

Bigram maximum-likelihood estimate: $\quad q\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}$
Unigram maximum-likelihood estimate: $\quad q\left(w_{i}\right)=\frac{c\left(w_{i}\right)}{c(\cdot)}$
Which one suffers from the data sparsity problem the most?
Which one is more accurate?

## Linear interpolation (stupid backoff)

$$
\begin{aligned}
q\left(w_{i} \mid w_{i-2}, w_{i-1}\right)= & \lambda_{1} \times q_{\mathrm{ML}}\left(w_{i} \mid w_{i-2}, w_{i-1}\right) \\
& +\lambda_{2} \times q_{\mathrm{ML}}\left(w_{i} \mid w_{i-1}\right) \\
& +\lambda_{3} \times q_{\mathrm{ML}}\left(w_{i}\right)
\end{aligned}
$$

where $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$, and $\lambda_{i} \geq 0$ for all $i$.
How to choose the value of $\quad \lambda_{1}, \lambda_{2}, \lambda_{3}$
Use the held-out corpus
Hyperparameters

Training Data

## Held-Out <br> Data

Test
Data
maximize the probability of held-out data.

## Markov models in retrospect

Consider a sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$, each take any value in $\mathcal{V}$
The joint probability of a sentence is

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\
= & P\left(X_{1}=x_{1}\right) \prod_{i=2}^{n} P\left(X_{i}=x_{i} \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}\right)
\end{aligned}
$$

$$
=P\left(X_{1}=x_{1}\right) \prod_{i=2}^{n} \frac{P\left(X_{i}=x_{i} \mid X_{i-1}=x_{i-1}\right)}{\text { First-order Markov Assumption }} \begin{array}{r}
\text { N-gram language models }
\end{array}
$$

## Limitations of n-gram language models

They are not sufficient to handle long-range dependencies
"Alice/Bob could not go to work that day because she/he had a doctor's appointment"

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\
= & P\left(X_{1}=x_{1}\right) \prod_{i=2}^{n} P\left(X_{i}=x_{i} \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}\right)
\end{aligned}
$$

$$
=P\left(X_{1}=x_{1}\right) \prod_{i=2}^{n} \frac{P\left(X_{i}=x_{i} \mid X_{i-1}=x_{i-1}\right)}{\text { First-order Markov Assumption }} \begin{array}{r}
\text { N-gram language models }
\end{array}
$$

## Markov models in retrospect

Consider a sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$, each take any value in $\mathcal{V}$
The joint probability of a sentence is

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\
= & P\left(X_{1}=x_{1}\right) \prod_{i=2}^{n} \frac{P\left(X_{i}=x_{i} \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}\right)}{\text { Is it possible to directly model this probability? }}
\end{aligned}
$$

## Neural network language models

Consider a sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$, each take any value in $\mathcal{V}$
The joint probability of a sentence is

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\
= & P\left(X_{1}=x_{1}\right) \prod_{i=2}^{n} \frac{P\left(X_{i}=x_{i} \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}\right)}{\text { Is it possible to directly model this probability? }}
\end{aligned}
$$



## Neural network language models

Consider a sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$, each take any value in $\mathcal{V}$
The joint probability of a sentence is

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\
= & P\left(X_{1}=x_{1}\right) \prod_{i=2}^{n} \frac{P\left(X_{i}=x_{i} \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}\right)}{\text { Is it possible to directly model this probability? }}
\end{aligned}
$$

$\begin{aligned} & P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{i-1024}, \ldots, w_{i-2}, w_{i-1}\right) \\ & \text { Modern LMs can handle much longer contexts! }\end{aligned}$


Train on a much larger corpus!

Transformers, neural networks and many others
e.g., ChatGPT

## Perplexity: n-gram v.s. neural language models

Training corpus 38 million words, test corpus 1.5 million words, both WSJ

| N-gram <br> Order | Unigram | Bigram | Trigram |
| :---: | :---: | :---: | :---: |
| Perplexity <br> (test) | 962 | 170 | 109 |




[^0]:    Trigram language model

