COMP 3361 Natural Language Processing Tutorial #2: Transformer and Its Implementation

- Transformer and Its Implementation
- FAQ

Agenda

Reading Materials

- The Illustrated Transformer
 - <u>https://jalammar.github.io/illustrated-transformer/</u>
- The Annotated Transformer
 - <u>https://nlp.seas.harvard.edu/2018/04/03/attention.html</u>
- Attention Is All You Need
 - <u>https://arxiv.org/abs/1706.03762</u>
- NanoGPT lacksquare
 - https://github.com/karpathy/nanoGPT \bullet
 - lacksquare

https://colab.research.google.com/drive/1JMLa53HDuA-i7ZBmqV7ZnA3c_fvtXnx-

Multi-Head Self-Attention

- Let E = [sent len, embedding dim] be the input sentence. This will be passed through three different linear layers to produce three mats:
 - Query $Q = EW^Q$: each token "chooses" what to attend to
 - Keys $K = EW^{K}$: these control what each token looks like as a "target"
 - Values $V = EW^V$: these vectors get summed up to form the output

$\operatorname{Attention}(Q, K, V)$

Multi-Head Self-Attention

$$V(t) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Self-Attention

Machines

WQ

V2

WV

Wκ

Self-Attention

Wκ

=

=

Κ

sent len x sent len (attn for each word to each other)

sent len x hidden dim Z is a weighted combination of V rows

Self-Attention

def attention(query, key, value, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" $d_k = query_size(-1)$ scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) $p_attn = scores_softmax(dim=-1)$ if dropout is not None: $p_attn = dropout(p_attn)$ return torch.matmul(p_attn, value), p_attn

Attention Maps

- Example visualization of attention matrix A (from assignment)
- Each row: distribution over what that token attends to. E.g., the first "v" attends very heavily to itself (bright) yellow box)
- Your task on the HW: assess if the attentions make sense

Just duplicate the whole computation with different weights:

Thinking Machines

ATTENTION HEAD #0

Multi-Head Self-Attention

ATTENTION HEAD #1

W₁Q

1	

	_	
Т		
т		
Т		
	_	

W₁^K

W₁v

1) This is our input sentence* 2) We embed each word*

3) Split into 8 heads. We multiply X or R with weight matrices

Thinking Machines

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Multi-Head Self-Attention

4) Calculate attention using the resulting Q/K/V matrices

5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Transformers

Architecture

 Alternate multi-head self-attention with feedforward layers that operate over each word individually

 $FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$

- These feedforward layers are where most of the parameters are
- Residual connections in the model: input of a layer is added to its output
- _ayer normalization: controls the scale of different layers in very deep networks (**not needed in A2**)

Dimensions

- Vectors: d_{model}
- Queries/Keys: d_k , always smaller than d_{model}
- Values: separate dimension d_{v} , output is multiplied by W^{O} which is $d_{v} \ge d_{model}$ so we can get back to d_{model} before the residual
- FFN can explode the dimension with W_1 and collapse it back with W_2
- $FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$ \bullet

*d*_{model}

$$d_v \rightarrow d_{model}$$

*d*_{model}

- class PositionwiseFeedForward(nn.Module): "Implements FFN equation."
 - def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout)
 - def forward(self, x): return self.w_2(self.dropout(self.w_1(x).relu()))

FFN Layer

Transformers: Position Sensitivity

- Transformers have no notion of position by default
- Encode each sequence position as an integer, add it to the word embedding vector

 $PE_{(pos,2i)}=\sin(pos/10000^{2i/d_{
m model}})$ $PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{
m model}})$

- Where **pos** is the position and **i** is the dimension.
- That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from 2π to $10000 \cdot 2\pi$

Embedding dim

class PositionalEncoding(nn.Module): "Implement the PE function."

> def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout)

```
# Compute the positional encodings once in log space.
    pe = torch.zeros(max_len, d_model)
    position = torch.arange(0, max_len).unsqueeze(1)
    div_term = torch.exp(
        torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)
    pe[:, 0::2] = torch.sin(position * div_term)
    pe[:, 1::2] = torch.cos(position * div_term)
    pe = pe.unsqueeze(0)
    self.register_buffer("pe", pe)
def forward(self, x):
   x = x + self.pe[:, : x.size(1)].requires_grad_(False)
    return self.dropout(x)
```

Position Encoding

Transformers: Complete Model Output **Probabilities** Softmax Original Transformer paper presents an ∟inear encoder-decoder model Add & Norm Feed Forward • In this assignment we don't need to Add & Norm Add & Norm Multi-Head think about both of these parts. Feed Attentior N× Forward Add & Norm N× Add & Norm Masked • Turn the encoder into a decoder-only Multi-Head Multi-Head Attention Attention model through use of a triangular causal attention mask (only allow attend on to Positional Positional Encoding Encoding previous tokens) Input Output Embedding Embedding

Outputs (shifted right)

Inputs

```
class Encoder(nn.Module):
    "Core encoder is a stack of N layers"
   def __init__(self, layer, N):
       super(Encoder, self).__init__()
       self.layers = clones(layer, N)
       self.norm = LayerNorm(layer.size)
   def forward(self, x, mask):
        "Pass the input (and mask) through each layer in turn."
       for layer in self.layers:
           x = layer(x, mask)
        return self.norm(x)
```

class SublayerConnection(nn.Module):

> A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. 111111

def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout)

def forward(self, x, sublayer): return x + self.dropout(sublayer(self.norm(x)))

```
class EncoderLayer(nn.Module):
    "Encoder is made up of self-attn and feed forward (defined below)"
```

```
def __init__(self, size, self_attn, feed_forward, dropout):
    super(EncoderLayer, self).__init__()
    self.self_attn = self_attn
    self.feed_forward = feed_forward
    self.sublayer = clones(SublayerConnection(size, dropout), 2)
    self.size = size
```

```
def forward(self, x, mask):
    "Follow Figure 1 (left) for connections."
   x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
    return self.sublayer[1](x, self.feed_forward)
```

```
"Apply residual connection to any sublayer with the same size."
```


Transformer Language Modeling

What do Transformers produce?

- the movie
- Encoding of each word can pass this to another layer to make a prediction (like predicting the next word for language modeling)
- Like RNNs, Transformers can be viewed as a transformation of a \bullet

great was

sequence of vectors into a sequence of context-dependent vectors

Transformer Language Modeling

word probs

 W is a (vocab size) x (hidden size) word embeddings)

 $P(w | \text{context}) = \frac{\exp(\mathbf{w} \cdot \mathbf{h_i})}{\sum_{w'} \exp(\mathbf{w'} \cdot \mathbf{h_i})}$

equivalent to

 $P(w|\text{context}) = \text{softmax}(W\mathbf{h}_i)$

• W is a (vocab size) x (hidden size) matrix; nn.Linear in PyTorch (rows are

- Input is a sequence of words, output is those words shifted by one,
- (similar to batching but this is NOT what we refer to as batching)

Allows us to train on predictions across several timesteps simultaneously

Training Transformer LMs

 $loss_fcn = nn.NLLLoss()$ loss += loss_fcn(log_probs, ex.output_tensor) [seq len, num classes]

• Batching is a little tricky with NLLLoss: need to collate [batch, seq len, num classes] to [batch * seq len, num classes]. You do not need to batch

- P(w|context)
 - \sim loss = log P(w*|context)
- Total loss = sum of negative log likelihoods at each position
- [seq len, num output classes] [seq len]

- [seq len]

I saw the dog running in the park and it looked very excited to be there

batch dim

Batched LM Training

Multiple sequences and multiple timesteps per sequence

A Small Problem with Transformer LMs

• This Transformer LM as we've described it will easily achieve perfect accuracy. Why?

With standard self-attention: "I" attends to "saw" and the model is "cheating". How do we ensure that this doesn't happen?

Attention Masking

• We want to mask out everything in red (an upper triangular matrix)

Key words

the dog saw

Implementing in PyTorch

 nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, can accept an input and a mask for language modeling:

Inside the module; need to fill in size parameters layers = nn.TransformerEncoderLayer([...]) [...]

Inside forward(): puts negative infinities in the red part mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1) output = transformer_encoder(input, mask=mask)

You will not use these for Part 1, only for Part 2

- transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])

Assignment 2

Assignment 2

- Part 1: Building a "Transformer" Encoder
- Part 2: Transformer for Language Modeling

- Q: How to turn the text into embedding?
 - A: use nn.Embedding
- Q: are we allowed to create or update classes and functions?
 - A: Yes, just make sure your train_Im is compatible with the original one.
- Q: Time limitations of autograder?
 - A: Yes we collect these data. Even if your code fails to execute, has a long runtime, or does not reach that number, we still carefully evaluate all solutions and accumulate grades for each correct step.
- Q: what is d_internal? Shouldn't it be equal to d_model?
 - A: Please refer to previous the Architecture slides.

FAQ: Part 1

- Q: Should we implement encoder-decoder architecture?
 - A: No, please use the nn.TransformerEncoder with casual mask.
- Q: Batching
 - A: make sure you create the nn.TransformerEncoderLayer with **batch** first=True.

FAQ: Part 2