
COMP 3361 Natural Language Processing
Tutorial #2: Transformer and Its Implementation



Agenda

• Transformer and Its Implementation


• FAQ



Reading Materials
• The Illustrated Transformer 

• https://jalammar.github.io/illustrated-transformer/


• The Annotated Transformer 

• https://nlp.seas.harvard.edu/2018/04/03/attention.html


• Attention Is All You Need 

• https://arxiv.org/abs/1706.03762


• NanoGPT 

• https://github.com/karpathy/nanoGPT


• https://colab.research.google.com/drive/1JMLa53HDuA-i7ZBmqV7ZnA3c_fvtXnx-

https://jalammar.github.io/illustrated-transformer/
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://arxiv.org/abs/1706.03762
https://github.com/karpathy/nanoGPT
https://colab.research.google.com/drive/1JMLa53HDuA-i7ZBmqV7ZnA3c_fvtXnx-


Multi-Head Self-Attention



Multi-Head Self-Attention
• Let E = [sent len, embedding dim] be the input sentence. This will be 

passed through three different linear layers to produce three mats:


• Query : each token “chooses” what to attend to


• Keys : these control what each token looks like as a “target”


• Values : these vectors get summed up to form the output

Q = EWQ

K = EWK

V = EWV



Self-Attention



Self-Attention
sent len x sent len 

(attn for each word to each other)

sent len x hidden dim 
Z is a weighted combination of V rows



Self-Attention



Attention Maps

• Example visualization of attention 
matrix A (from assignment)


• Each row: distribution over what that 
token attends to. E.g., the first “v” 
attends very heavily to itself (bright 
yellow box)


• Your task on the HW: assess if the 
attentions make sense



Multi-Head Self-Attention
Just duplicate the whole 
computation with different 
weights:



Multi-Head Self-Attention



Transformers



Architecture
• Alternate multi-head self-attention with feedforward 

layers that operate over each word individually


• These feedforward layers are where most of the 
parameters are


• Residual connections in the model: input of a layer 
is added to its output


• Layer normalization: controls the scale of different 
layers in very deep networks (not needed in A2)



Dimensions
• Vectors: 


• Queries/Keys: , always smaller than 


• Values: separate dimension , output is multiplied by 
 which is  x  so we can get back to   

before the residual


• FFN can explode the dimension with  and collapse 
it back with  


•
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FFN Layer



Transformers: Position Sensitivity

• Transformers have no notion of position by default


• Encode each sequence position as an integer, add it to the word 
embedding vector



Position Encoding

• Where pos is the position and i is the dimension. 


• That is, each dimension of the positional encoding corresponds to a 
sinusoid. The wavelengths form a geometric progression from  to 2π
10000 ⋅ 2π

Words

Embedding dim



Position Encoding



Transformers: Complete Model

• Original Transformer paper presents an 
encoder-decoder model


• In this assignment we don’t need to 
think about both of these parts.


• Turn the encoder into a decoder-only 
model through use of a triangular causal 
attention mask (only allow attend on to 
previous tokens)





Transformer Language Modeling



What do Transformers produce?

• Encoding of each word — can pass this to another layer to make a 
prediction (like predicting the next word for language modeling)


•  Like RNNs, Transformers can be viewed as a transformation of a 
sequence of vectors into a sequence of context-dependent vectors

   the   movie    was    great



Transformer Language Modeling

• W is a (vocab size) x (hidden size) matrix; nn.Linear in PyTorch (rows are 
word embeddings)



Training Transformer LMs

• Input is a sequence of words, output is those words shifted by one, 


• Allows us to train on predictions across several timesteps simultaneously 
(similar to batching but this is NOT what we refer to as batching)



Training Transformer LMs

• Batching is a little tricky with NLLLoss: need to collate [batch, seq len, 
num classes] to [batch * seq len, num classes]. You do not need to batch

loss_fcn = nn.NLLLoss() 
loss += loss_fcn(log_probs, ex.output_tensor)

[seq len, num output classes] [seq len]

[seq len, num classes]         [seq len]



Batched LM Training



A Small Problem with Transformer LMs
• This Transformer LM as we’ve described it will easily achieve perfect 

accuracy. Why?


• With standard self-attention: “I” attends to “saw” and the model is 
“cheating”. How do we ensure that this doesn’t happen?



Attention Masking
• We want to prohibit


• We want to mask out everything in red (an upper triangular matrix)

Key words

Query words



Implementing in PyTorch
• nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, 

can accept an input and a mask for language modeling:


• You will not use these for Part 1, only for Part 2

# Inside the module; need to fill in size parameters 
layers = nn.TransformerEncoderLayer([…]) 
transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[…])  
[…] 
# Inside forward(): puts negative infinities in the red part 
mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1) 
output = transformer_encoder(input, mask=mask)



Assignment 2



Assignment 2

• Part 1: Building a “Transformer” Encoder


• Part 2: Transformer for Language Modeling



FAQ: Part 1
• Q: How to turn the text into embedding?


• A: use nn.Embedding


• Q: are we allowed to create or update classes and functions?


• A: Yes, just make sure your train_lm is compatible with the original one.


• Q: Time limitations of autograder?


• A: Yes we collect these data. Even if your code fails to execute, has a long runtime, or does not 
reach that number, we still carefully evaluate all solutions and accumulate grades for each correct 
step.


• Q: what is d_internal? Shouldn’t it be equal to d_model?


• A: Please refer to previous the Architecture slides.



FAQ: Part 2

• Q: Should we implement encoder-decoder architecture?


• A: No, please use the nn.TransformerEncoder with casual mask.


• Q: Batching


• A: make sure you create the nn.TransformerEncoderLayer with 
batch_first=True.


