COMP 3361 Natural Language Processing

Tutorial #2: Transformer and Its Implementation

Agenda

* Transformer and Its Implementation

 FAQ

Reading Materials

The lllustrated Transformer

e https://jalammar.qgithub.io/illustrated-transformer/

The Annotated Transformer

* https:.//nlp.seas.harvard.edu/2018/04/03/attention.html

Attention Is All You Need
» https://arxiv.org/abs/1706.03762

NanoGPT
» https://github.com/karpathy/nanoGPT

* https://colab.research.google.com/drive/1JMLa53HDuUA-i7ZBmqgV7ZnA3c fviXnx-

https://jalammar.github.io/illustrated-transformer/
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://arxiv.org/abs/1706.03762
https://github.com/karpathy/nanoGPT
https://colab.research.google.com/drive/1JMLa53HDuA-i7ZBmqV7ZnA3c_fvtXnx-

Multi-Head Self-Attention

Multi-Head Self-Attention

 Let E = [sent len, embedding dim] be the input sentence. This will be
passed through three different linear layers to produce three mats:

. Query O = EW¥: each token “chooses” what to attend to
. Keys K = EWX: these control what each token looks like as a “target”

. ValuesV = EW": these vectors get summed up to form the output

QK"
vy

Attention(Q, K, V') = softmax(1%

Self-Attention

VVVVVV

Self-Attention

sent len x sent len
- (attn for each word to each other)

T

softmax(

[l
S‘
|

o

sent len x hidden dim
Z I1s a weighted combination of V rows

Self-Attention

def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'™
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask 1is not None:
scores = scores.masked fill(mask == 0, -1e9)
p_attn = scores.softmax(dim=-1)
1f dropout 1s not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn

Attention

Maps

hei1r averaage al bedo

 Example visualization of attention h L
matrix A (from assignment) i

* Each row: distribution over what that
token attends to. E.g., the first “v”
attends very heavily to itself (bright
vellow box)

e W = D < Q@

e Your task on the HW: assess If the
attentions make sense

Multi-Head Self-Attention

Just duplicate the whole
computation with different
weights:

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

Multi-Head Self-Attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting = matrices,
iInput sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
Wo©

A Qo

"

W, @
* In all encoders other than #0, Q1
we don't need embedding. It _
We start directly with the output] l{ {]‘ }
of the encoder right below this one ‘ ~
W-@Q

Transformers

Architecture

* Alternate multi-head self-attention with feedforward
layers that operate over each word individually Add & Norm
FFN(QE) — max((), $W1 bl)WQ bg
 These feedforward layers are where most of the
parameters are

Add & Norm

* Residual connections in the model: input of a layer Multi-Head
IS added to Iits output Attention

* [Layer normalization: controls the scale of different
layers in very deep networks (not needed in A2)

Dimensions]

model

Vectors: d
SCLOIS: Cmodet Add & Norm

Queries/Keys: d,, always smaller thand,, .., Feed
rnalForward

d

Values: separate dimension d,, output is multiplied by
W? whichisd, xd, ., so we can get backtod, ..,

before the residual Add & Norm

d ->d
- v~ Ymodel Multi-Head
FFN can explode the dimension with W, and collapse Attention
it back with W, o

FFN(QZ) — maX(O, :EWl + bl)Wz + bz

FFN Layer

class PositionwiseFeedForward(nn.Module):
"Implements FFN equation.™

def __init_ (self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self)._ _init_ ()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)

def forward(self, x):
return self.w_2(self.dropout(self.w_1(x).relu()))

Transformers: Position Sensitivity

Positional
Encoding

e the molle was great

Input + + + +
Embedding

=))) S

¥o! ¥o! O ¥o!

= = = &

INnputs o W W W

* Transformers have no notion of position by default

 Encode each sequence position as an integer, add it to the word
embedding vector

Position Encoding

PE 0,2 = sin(pos/10000%/%meae) ;
Words

b 4
o
e
e
e

PE(p052i41) = cos(pos/ 10()()02i/dmodel)

uuuuuuuuu

 Where pos is the position and 1 is the dimension.

 That is, each dimension of the positional encoding corresponds to a
sinusoid. The wavelengths form a geometric progression from 27 to

10000 - 27

Position Encoding

class PositionalEncoding(nn.Module):
"Implement the PE function.™

def __init_ (self, d_model, dropout, max_1len=5000):
super(PositionalEncoding, self).__init__ ()
self.dropout = nn.Dropout(p=dropout)

Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(®, max_1len).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2) * —(math.log(10000.0) / d_model)
)
pel[:, 0::2] = torch.sin(position * div_term)
pel[:, 1::2] = torch.cos(position % div_term)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe)

def forward(self, x):
X = X + self.pel[:, : x.size(1)]l.requires_grad_(False)
return self.dropout(x)

Transformers: Complete Model

e QOriginal Transformer paper presents an
encoder-decoder model

* In this assignment we don’t need to
think about both of these parts.

* Turn the encoder into a decoder-only
model through use of a triangular causal
attention mask (only allow attend on to
previous tokens)

7

N x

Add & Norm

Feed
Forward

|

|

.

\

Add & Norm

|

Multi-Head
Attention

|

At

Qutput

Probabilities

1

Softmax

1

Linear

4

|
Add & Norm

|

Feed
Forward

4

Add & Norm

|

Multi-Head
Attention

T 7 7

N x

Add & Norm

Masked
Multi-Head
Attention

J

Positional

Encodin

9

Oa

|

Input
Embedding

|

T

Inputs

.

A_t

)

o Positional
Encoding

|

Output
Embedding

(shifted right)

T

Qutputs

class EncoderLayer(nn.Module):

class Encoder(nn.Module): "Encoder is made up of self-attn and feed forward (defined below)"
"Core encoder is a stack of N layers"

def __init__ (self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__ ()
self.self_attn = self_attn
self.feed_forward = feed forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size

def __init__ (self, layer, N):
super(Encoder, self).__init__ ()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)

def forward(self, x, mask):

"Pass the input (and mask) through each layer in turn."
for layer in self.layers: def forward(self, x, mask):

x = layer(x, mask) "Follow Figure 1 (left) for connections."
return self.norm(x) x = self.sublayer[@] (x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed forward)

class SublayerConnection(nn.Module):
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.

def __init__ (self, size, dropout):
super(SublayerConnection, self).__init__ ()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)

def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
return x + self.dropout(sublayer(self.norm(x)))

Transformer Language Modeling

What do Transformers produce?

I | D | D |
the movie was great

 Encoding of each word — can pass this to another layer to make a
prediction (like predicting the next word for language modeling)

e Like RNNSs, Transformers can be viewed as a transformation of a
sequence of vectors into a sequence of context-dependent vectors

Transformer Language Modeling

word probs . h:
| | P(w|context) = Zexp(w(,l)h)
, exp(w’ - h
hi w 0
| saw the dog P(w|context) = softmax(Wh,)

W is a (vocab size) x (hidden size) matrix; nn.Linear in PyTorch (rows are
word embeddings)

Training Transformer LMs

| saw the dog running

r t -t 1t 1
r t t t 1

1 1 1 1 1

<s> | saw the dog

* Input Is a sequence of words, output is those words shifted by one,

* Allows us to train on predictions across several timesteps simultaneously
(similar to batching but this is NOT what we refer to as batching)

Training Transformer LMs

—1 P(w|context)

| | T T .‘ I| " loss = — log P(w* | context)
| ; ;] ; I ; | Total loss = sum of negative log
likelihoods at each position
| 1 | |

| | | | | [seq len, num output classes] [seq len]
| saw the dog

loss fcn = nn.NLLLoss ()

loss += loss_fcn(log_probs, ex.output_tensor)
Iseq len, num classes] [seq len]

o Batching is a little tricky with NLLLoss: need to collate [batch, seq len,
num classes] to [batch * seq len, num classes]. You do not need to batch

Batched LM Tralnlng

--. _-------------------------------. ’-- --

hatch dim / (looked very excited to be h

g | saw the dog running

S e e e
-

| | e
_ <s> | saw the dog

~

g in the park and it A

cbrk

J

_ <s> in the park and Y

> Multiple sequences and multiple
timesteps per sequence

|/

A Small Problem with Transformer LMs

* This Transformer LM as we’ve described it will easily achieve perfect
accuracy. Why?

| saw the dog running
I | D | D N e

I | N | N | e
<s> | saw the dog

e With standard self-attention: attends to “saw’” and the model iIs
“cheating”. How do we ensure that this doesn’t happen?

Attention Masking

« We want to prohibit Key words

<s> | saw the dog

<s>

|
Query words .

the
dog

 We want to mask out everything in red (an upper triangular matrix)

Implementing in Pylorch

* nn.TransformerEncoder can be built out of nn.TransformerEncoderlLayers,
can accept an input and a mask for language modeling:

Inside the module; need to fill 1n size parameters
layers = nn.TransformerEncoderLayer([..])

transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[..])
[...]

Inside forward(): puts negative infinities in the red part

mask = torch.triu(torch.ones(len, len) *x float('-inf'), diagonal=1)

output = transformer_encoder(input, mask=mask) :

 You will not use these for Part 1, only for Part 2

IIIIIIIIIIIIIIIIII
mmmmmmmmmmmmmmmmmmmm
FFFFFFFFFF

Window

Assignment 2

Assignment 2

 Part 1: Building a “Transformer” Encoder

 Part 2: Transformer for Language Modeling

FAQ: Part 1

Q: How to turn the text into embedding?

e A: use nn.Embedding
Q: are we allowed to create or update classes and functions?

* A: Yes, just make sure your train_Im is compatible with the original one.
Q: Time limitations of autograder?

* A: Yes we collect these data. Even if your code fails to execute, has a long runtime, or does not
reach that number, we still carefully evaluate all solutions and accumulate grades for each correct
step.

Q: what is d_internal? Shouldn’t it be equal to d_model?

* A: Please refer to previous the Architecture slides.

FAQ: Part 2

* Q: Should we implement encoder-decoder architecture?
* A: No, please use the nn.TransformerEncoder with casual mask.
e Q: Batching

* A: make sure you create the nn.TransformerEncoderLayer with
batch_first=True.

