
COMP 3361 Natural Language Processing
Tutorial #2: Transformer and Its Implementation

Agenda

• Transformer and Its Implementation

• FAQ

Reading Materials
• The Illustrated Transformer

• https://jalammar.github.io/illustrated-transformer/

• The Annotated Transformer

• https://nlp.seas.harvard.edu/2018/04/03/attention.html

• Attention Is All You Need

• https://arxiv.org/abs/1706.03762

• NanoGPT

• https://github.com/karpathy/nanoGPT

• https://colab.research.google.com/drive/1JMLa53HDuA-i7ZBmqV7ZnA3c_fvtXnx-

https://jalammar.github.io/illustrated-transformer/
https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://arxiv.org/abs/1706.03762
https://github.com/karpathy/nanoGPT
https://colab.research.google.com/drive/1JMLa53HDuA-i7ZBmqV7ZnA3c_fvtXnx-

Multi-Head Self-Attention

Multi-Head Self-Attention
• Let E = [sent len, embedding dim] be the input sentence. This will be

passed through three different linear layers to produce three mats:

• Query : each token “chooses” what to attend to

• Keys : these control what each token looks like as a “target”

• Values : these vectors get summed up to form the output

Q = EWQ

K = EWK

V = EWV

Self-Attention

Self-Attention
sent len x sent len

(attn for each word to each other)

sent len x hidden dim
Z is a weighted combination of V rows

Self-Attention

Attention Maps

• Example visualization of attention
matrix A (from assignment)

• Each row: distribution over what that
token attends to. E.g., the first “v”
attends very heavily to itself (bright
yellow box)

• Your task on the HW: assess if the
attentions make sense

Multi-Head Self-Attention
Just duplicate the whole
computation with different
weights:

Multi-Head Self-Attention

Transformers

Architecture
• Alternate multi-head self-attention with feedforward

layers that operate over each word individually

• These feedforward layers are where most of the
parameters are

• Residual connections in the model: input of a layer
is added to its output

• Layer normalization: controls the scale of different
layers in very deep networks (not needed in A2)

Dimensions
• Vectors:

• Queries/Keys: , always smaller than

• Values: separate dimension , output is multiplied by
 which is x so we can get back to

before the residual

• FFN can explode the dimension with and collapse
it back with

•

dmodel

dk dmodel

dv
WO dv dmodel dmodel

W1
W2

dmodel

dinternal

dmodel

dk dk dv

dmodel

 -> dv dmodel

FFN Layer

Transformers: Position Sensitivity

• Transformers have no notion of position by default

• Encode each sequence position as an integer, add it to the word
embedding vector

Position Encoding

• Where pos is the position and i is the dimension.

• That is, each dimension of the positional encoding corresponds to a
sinusoid. The wavelengths form a geometric progression from to 2π
10000 ⋅ 2π

Words

Embedding dim

Position Encoding

Transformers: Complete Model

• Original Transformer paper presents an
encoder-decoder model

• In this assignment we don’t need to
think about both of these parts.

• Turn the encoder into a decoder-only
model through use of a triangular causal
attention mask (only allow attend on to
previous tokens)

Transformer Language Modeling

What do Transformers produce?

• Encoding of each word — can pass this to another layer to make a
prediction (like predicting the next word for language modeling)

• Like RNNs, Transformers can be viewed as a transformation of a
sequence of vectors into a sequence of context-dependent vectors

 the movie was great

Transformer Language Modeling

• W is a (vocab size) x (hidden size) matrix; nn.Linear in PyTorch (rows are
word embeddings)

Training Transformer LMs

• Input is a sequence of words, output is those words shifted by one,

• Allows us to train on predictions across several timesteps simultaneously
(similar to batching but this is NOT what we refer to as batching)

Training Transformer LMs

• Batching is a little tricky with NLLLoss: need to collate [batch, seq len,
num classes] to [batch * seq len, num classes]. You do not need to batch

loss_fcn = nn.NLLLoss()
loss += loss_fcn(log_probs, ex.output_tensor)

[seq len, num output classes] [seq len]

[seq len, num classes] [seq len]

Batched LM Training

A Small Problem with Transformer LMs
• This Transformer LM as we’ve described it will easily achieve perfect

accuracy. Why?

• With standard self-attention: “I” attends to “saw” and the model is
“cheating”. How do we ensure that this doesn’t happen?

Attention Masking
• We want to prohibit

• We want to mask out everything in red (an upper triangular matrix)

Key words

Query words

Implementing in PyTorch
• nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers,

can accept an input and a mask for language modeling:

• You will not use these for Part 1, only for Part 2

Inside the module; need to fill in size parameters
layers = nn.TransformerEncoderLayer([…])
transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[…])
[…]
Inside forward(): puts negative infinities in the red part
mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)
output = transformer_encoder(input, mask=mask)

Assignment 2

Assignment 2

• Part 1: Building a “Transformer” Encoder

• Part 2: Transformer for Language Modeling

FAQ: Part 1
• Q: How to turn the text into embedding?

• A: use nn.Embedding

• Q: are we allowed to create or update classes and functions?

• A: Yes, just make sure your train_lm is compatible with the original one.

• Q: Time limitations of autograder?

• A: Yes we collect these data. Even if your code fails to execute, has a long runtime, or does not
reach that number, we still carefully evaluate all solutions and accumulate grades for each correct
step.

• Q: what is d_internal? Shouldn’t it be equal to d_model?

• A: Please refer to previous the Architecture slides.

FAQ: Part 2

• Q: Should we implement encoder-decoder architecture?

• A: No, please use the nn.TransformerEncoder with casual mask.

• Q: Batching

• A: make sure you create the nn.TransformerEncoderLayer with
batch_first=True.

