

COMP 3361 Natural Language Processing

Lecture 17: Natural language generation with LLMs (cont'd)

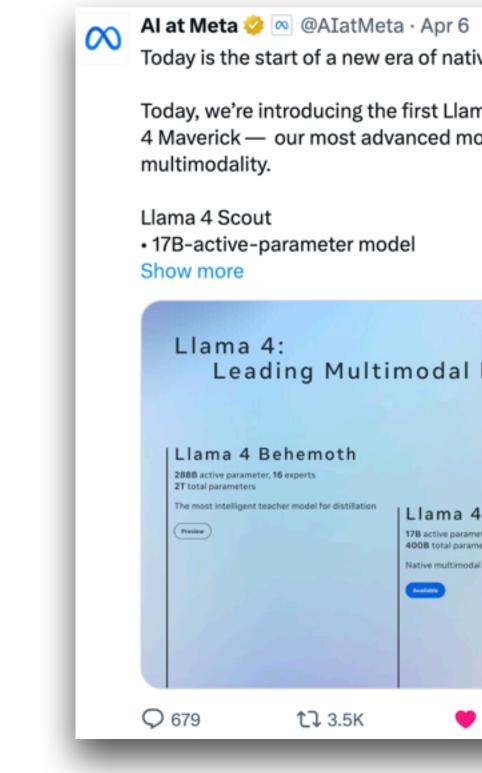
Many materials from CSE447@UW (Jaehun Jung) with special thanks!

Spring 2025

Announcements

• Assignment 3 is out, due on May 9th. Join #assignment-3 Slack channel for discussion

Latest Al news



ø ... Today is the start of a new era of natively multimodal AI innovation.

Today, we're introducing the first Llama 4 models: Llama 4 Scout and Llama 4 Maverick — our most advanced models yet and the best in their class for

del			
imo		ence ewest model suite offering unrivaled weed and efficiency	
17B 400 Nati	ama 4 Maverick active parameters, 128 experts B total parameters ive multimodal with 1M context length	Llama 4 Scout 17B active parameters, 16 experts 109B total parameters Industry leading 10M context length Optimized inference	
	🎔 12K	ı ı 2.8M 📃	Ţ

Categorization of NLG tasks

Less open-ended

Less open-ended generation: the input mostly determines the correct output generation.

More open-ended generation: the output distribution still has high degree of freedom.

More open-ended

How to control open-endedness in ChatGPT?

systeм You are a helpful assistant.	USER	The developer was a	9 @	Mode Chat	\sim
	ASSISTANT	person or team responsible for creating a maintaining software or computer progra		Model gpt-3.5-turbo	<u> </u>
	Add mes	sage		Temperature	1.5
				Maximum length	256
				Stop sequences Enter sequence and press Ta	ab
				Top P	1
				Frequency penalty	0
				Presence penalty	0
				API and Playground rec will not be used to train models. Learn more	

ChatGPT API web interface

- At each time step t, our model computes a vector of scores for each token in our vocabulary, $S \in \mathbb{R}^{V}$:
 - $S = f(\{y\}$
- Then, we compute a probability distribution P over $w \in V$ using these scores:

$$P(y_t = w | \{y_{< t}\})$$

$$\hat{y}_t = g(P($$

Decoding from LLMs

$$\{y_{\leq t}\}; \theta$$

 $f(\cdot; \theta)$ is your model

$$= \frac{\exp(S_w)}{\sum_{w' \in V} \exp(S_{w'})}$$

Our **decoding** algorithm defines a function to select a token from this distribution:

 $(y_t | \{y_{< t}\}))$ $g(\cdot)$ is your decoding algorithm

How to find the most likely text to generate?

Obvious method: Greedy Decoding

Selects the highest probability token according to $P(y_t | y_{< t})$ •

 $\hat{y}_t = argma$

Beam Search

candidates.

$$\sum_{w \in V} P(y_t = w \mid y_{< t})$$

• Also aims to find the string with the highest probability, but with a wider exploration of

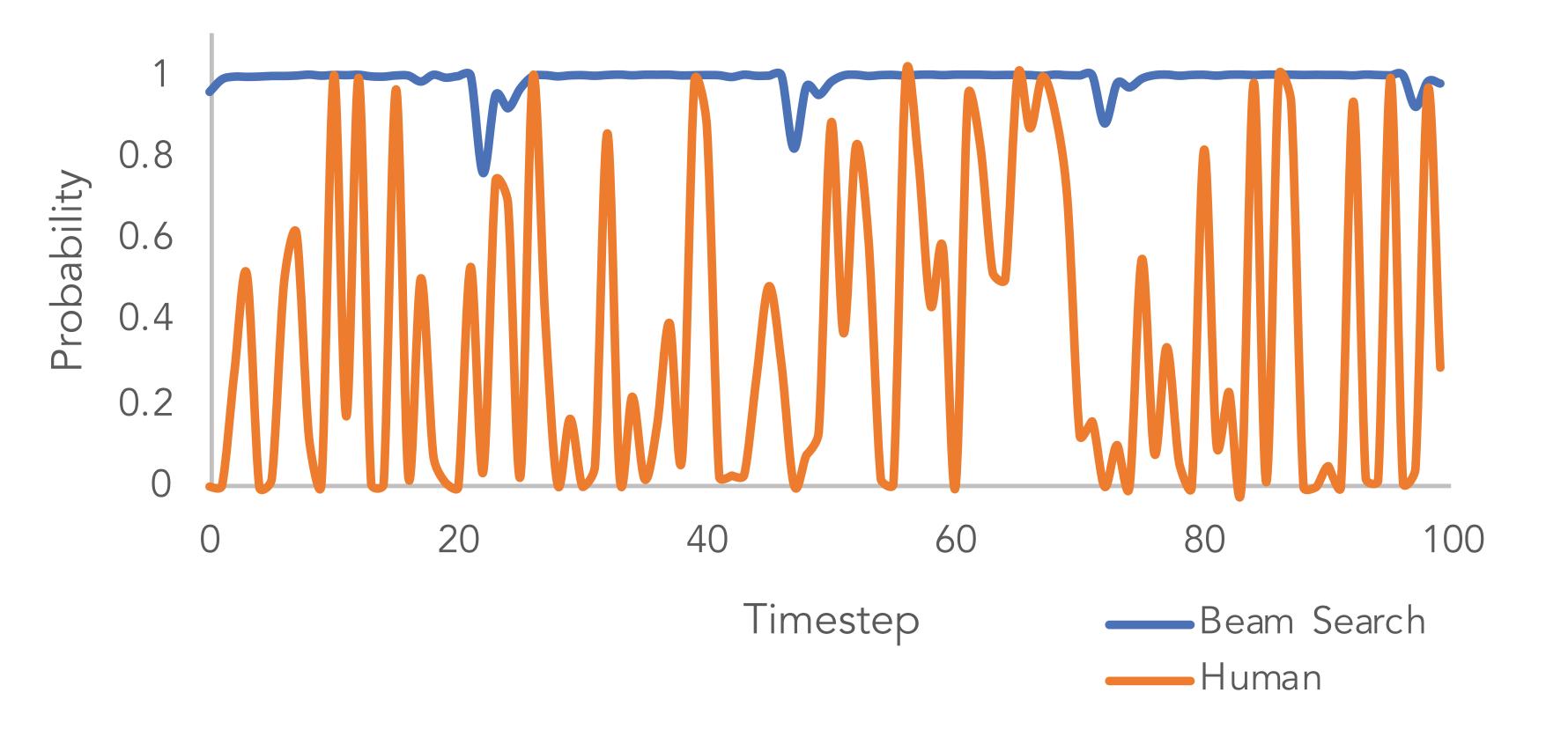
How to find the most likely text to generate?

- **Beam Search**
 - A form of best-first-search for the most likely string, but with a wider exploration of candidates.
 - Compared to greedy decoding, beam search gives a better approximation of brute-force search over all sequences
 - A small overhead in computation due to beam width Time complexity: O(beam width * vocab size * generation length)

But, are greedy sequences always the best solution?

- * Naive brute-force search: O(vocab size ^ generation length), hence intractable!
- **Note:** Overall, greedy / beam search is widely used for low-entropy tasks like MT and summarization.

Also, are greedy methods reasonable for open-ended generation?



Greedy methods fail to capture the <u>variance of human text distribution</u>.

(Holtzman et al. ICLR 2020)

Sampling generation from LLMs

Time to get random: Sampling

• Sample a token from the token distribution at each step!

• It's inherently *random* so you can sample any token.

 $\hat{y}_t \sim P(y_t = w | \{y\}_{< t})$

grocery store airport beach doctor hospital pub gym his

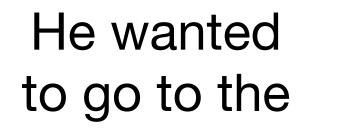
restroom bathroom

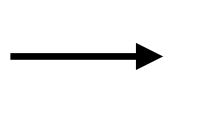
Decoding: Top-k Sampling

- <u>Problem</u>: Vanilla sampling makes every token in the vocabulary an option
 - Even if most of the probability mass in the distribution is over a limited set of options, the tail of the distribution could be very long and in aggregate have considerable mass (statistics speak: we have "heavy tailed" distributions)
 - Many tokens are probably really wrong in the current context.
 - Although each of them may be assigned a small probability, in aggregate they still get a high chance to be selected.
- <u>Solution:</u> Top-k sampling (Fan et al., 2018)
 - Only sample from the top k tokens in the probability distribution.

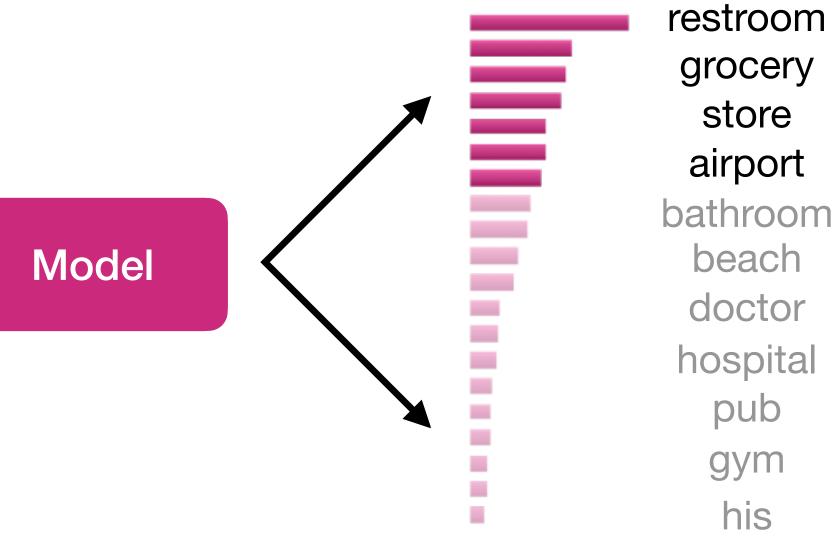
Decoding: Top-k Sampling

- <u>Solution</u>: Top-k sampling (Fan et al., 2018)
 - Only sample from the top k tokens in the probability distribution.
 - Common values for k = 10, 20, 50 (but it's up to you!)





- Increasing k yields more **diverse**, but **risky** outputs
- Decreasing k yields more safe but generic outputs



Issues with Top-k Sampling

For *flat* distribution, Top-k Sampling may cut off too **quickly**!

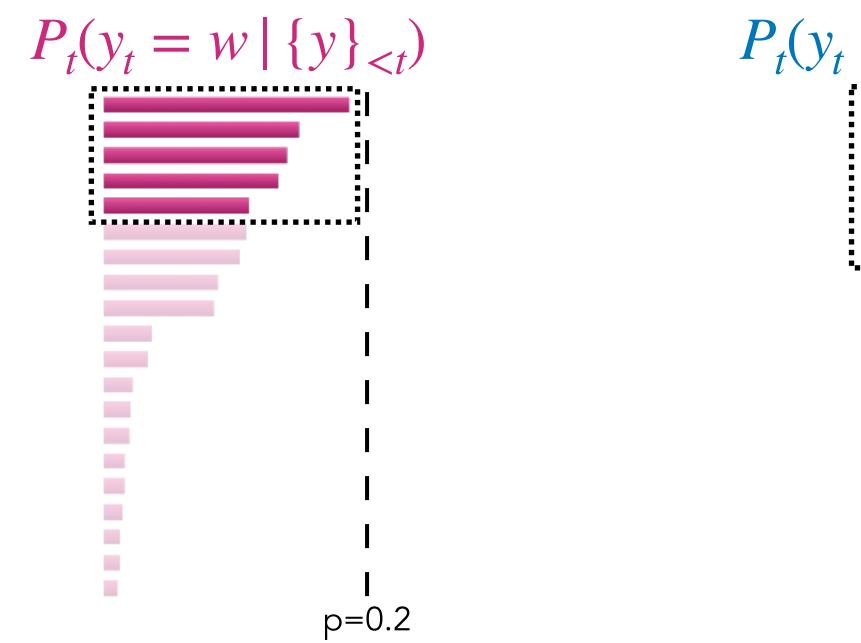
For *peaked* distribution, Top-*k* Sampling may also cut off too **slowly**!

Decoding: Top-p (Nucleus) Sampling

- <u>Problem</u>: The token distributions we sample from are dynamic
 - When the distribution P_t is flat, small k removes many viable options.
 - When the distribution P_t is peaked, large k allows too many options a chance to be selected.
- <u>Solution:</u> Top-p sampling (Holtzman et al., 2020)
 - Sample from all tokens in the top p cumulative probability mass (i.e., where mass is concentrated)
 - Varies k according to the uniformity of P_t

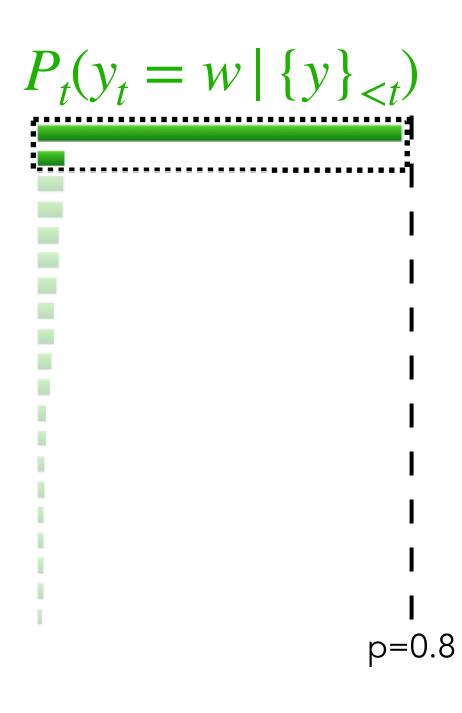
Decoding: Top-p (Nucleus) Sampling

- <u>Solution:</u> Top-p sampling (Holtzman et al., 2020)
 - concentrated)
 - Varies k according to the uniformity of P_{t}



• Sample from all tokens in the top p cumulative probability mass (i.e., where mass is

 $P_t(y_t = w | \{y\}_{< t})$ p=0.12



Scaling randomness: Softmax temperature

- scores $S \in \mathbb{R}^{|V|}$
 - $P_{t}(y_{t} = w | \{y_{< t}\}$
- •Here, you can apply **temperature hyperparameter** τ to the softmax to rebalance P_{τ} :
- Raise the temperature $\tau > 1$: P_t becomes more uniform
 - More diverse output (probability is spread across vocabulary)
- Lower the temperature $\tau < 1$: P_{τ} becomes more spiky
 - Less diverse output (probability concentrated to the top tokens)

• <u>Recall</u>: At time step t, model computes a distribution P_t by applying softmax to a vector of

$$(F) = \frac{\exp(S_w)}{\sum_{w' \in V} \exp(S_{w'})}$$

 $P_t(y_t = w | \{y_{< t}\}) = \frac{\exp(S_w/\tau)}{\sum_{w' \in V} \exp(S_{w'}/\tau)}$

Scaling randomness: Softmax temperature

• You can apply **temperature hyperparameter** τ to the softmax to rebalance P_t :

$$P_t(y_t = w \mid \{y_{< t}\}) = \frac{\exp(S_w/\tau)}{\sum_{w' \in V} \exp(S_{w'}/\tau)}$$

- Raise the temperature $\tau > 1$: P_t becomes more uniform
 - More diverse output (probability is spread across vocabulary)
- Lower the temperature $\tau < 1$: P_{τ} becomes more spiky
 - Less diverse output (probability concentrated to the top tokens)

$$\tau = 0.5$$
 $\tau = 1.0$ $\tau = 10.0$

Scaling randomness: Softmax temperature

- You can apply **temperature hyperparameter** τ to the softmax to rebalance P_t :
 - $P_t(y_t = w \mid \{y_{< t}\})$
- Raise the temperature $\tau > 1$: P_t becomes more uniform
 - More diverse output (probability is spread across vocabulary)
- Lower the temperature $\tau < 1$: P_{τ} becomes more spiky
 - Less diverse output (probability concentrated to the top tokens)

NOTE: Temperature is a hyperparameter for decoding algorithm, not an algorithm itself! It can be applied for both beam search and sampling methods.

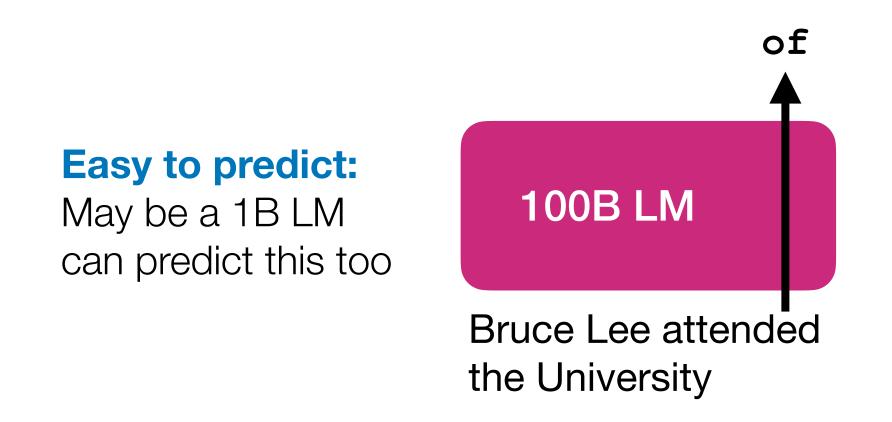
$$) = \frac{\exp(S_w/\tau)}{\sum_{w' \in V} \exp(S_{w'}/\tau)}$$

Toward better generation: Re-ranking

- <u>Problem</u>: What if I already have decoded a bad sequence from my model?
- Decode a bunch of sequences
 - Sample $n = 10, 20, 50, \dots$ sequences with the same input given
- Define a score to approximate quality of sequences and re-rank by this score
 - Simplest score: (low) perplexity
 - Careful! Remember that even the repetitive sequences get low perplexity in general... • Re-rankers can evaluate a variety of properties:
 - Style (Holtzman et al., 2018), Discourse (Gabriel et al., 2021), Factuality (Goyal et al., 2020), Logical Consistency (Jung et al. 2022), and many more
 - Can compose multiple re-rankers together.

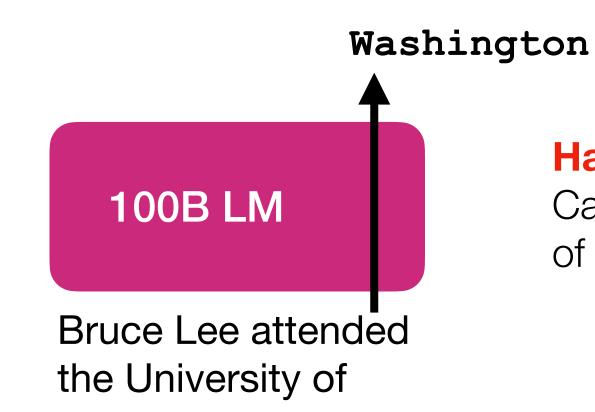
Speeding-up generation from LLMs

- Problem: Generating with a large LM takes a long time
- Intuition: Not all tokens are equally hard to generate!



• Idea: Use a generation from small LM to assist large LM generation

* Same idea independently proposed from DeepMind and Google - see Chen et al., 2023; Leviathan et al., 2023



Hard to predict:

Can really make use of the 100B LM here

- First, sample a draft of length K (= 5 in this example) from a small LM M_p $y_1 \sim p(\cdot | x), y_2 \sim p(\cdot | x, y_1), \dots, y_5 \sim p(\cdot | x, y_1, y_2, y_3, y_4)$ Input prefix
- Then, compute the token distribution at each time step with a large target LM M_q $q(\cdot | x), q(\cdot | x, y_1), q(\cdot | x, y_1, y_2), \cdots, q(\cdot | x, y_1, \cdots, y_5)$ Next token distribution of M_q , when given x, y_1, y_2
 - <u>Note</u>: This can be computed in a single forward pass of M_q (Why?)
- Let's denote $p_i = p(\cdot | x, y_1, \dots, y_{i-1})$ and $q_i = q(\cdot | x, y_1, \dots, y_{i-1})$ e.g., $q_2 = q(\cdot | x, y_1)$, i.e. next token distribution predicted by the target model $M_{q'}$ when given x and y_1

model M_a

9	Token	y_1	y_2	<i>y</i> ₃	<i>Y</i> 4	<i>Y</i> 5
		dogs	love	chasing	after	cars
Draft model (1B)	p_i	0.8	0.7	0.9	0.8	0.7
Target model (100B)	q_i	0.9	0.8	0.8	0.3	0.8

• Now, we can compare the probability of each token assigned by draft model M_p and target

• Starting from y_1 , decide whether or not to accept the tokens generated by the draft model.

model M_a

	Token	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	y_4	<i>Y</i> ₅
		dogs	love	chasing	after	cars
Draft model (1B)	p_i	0.8	0.7	0.9	0.8	0.7
Target model (100B)	q_i	0.9	0.8	0.8	0.3	0.8

- Case 1: $q_i \ge p_i$ The target model (100B) likes this token, even more than the draft model (which generated it). => Accept this token!

• Now, we can compare the probability of each token assigned by draft model M_p and target

• Starting from y_1 , decide whether or not to accept the tokens generated by the draft model.

Generation after step 1: dogs

model M_a

<i>q</i>	Token	y_1	<i>y</i> ₂	<i>y</i> ₃	y_4	<i>y</i> ₅
		dogs	love	chasing	after	cars
Draft model (1B)	p_i	0.8	0.7	0.9	0.8	0.7
Target model (100B)	q_i	0.9	0.8	0.8	0.3	0.8

- Case 1: $q_i \ge p_i$ The target model (100B) likes this token, even more than the draft model (which generated it). => Accept this token!

• Now, we can compare the probability of each token assigned by draft model M_p and target

• Starting from y_1 , decide whether or not to accept the tokens generated by the draft model.

Generation after step 2: dogs love

model M_a

	Token	y_1	<i>y</i> ₂	<i>y</i> ₃	<i>Y</i> 4	<i>Y</i> 5
		dogs	love	chasing	after	cars
Draft model (1B)	p_i	0.8	0.7	0.9	0.8	0.7
Target model (100B)	q_i	0.9	0.8	0.8	0.3	0.8

- Case 2: $q_i < p_i$ (accept) Target model doesn't like this token as much as the draft model...
- => Accept it with the probability $\frac{q_i}{d}$ p_i

• Now, we can compare the probability of each token assigned by draft model M_p and target

Generation after step 3: dogs love chasing

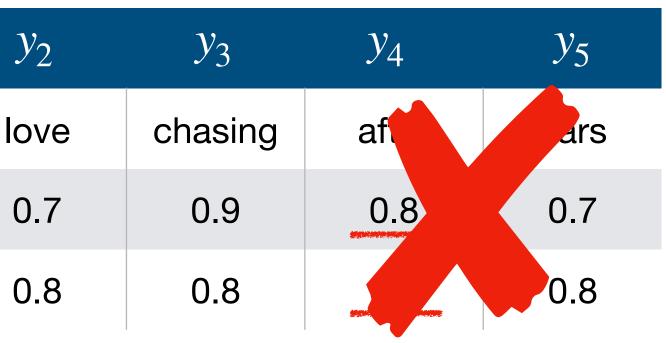
> In this example, assume we accepted it with prob=0.8/0.9

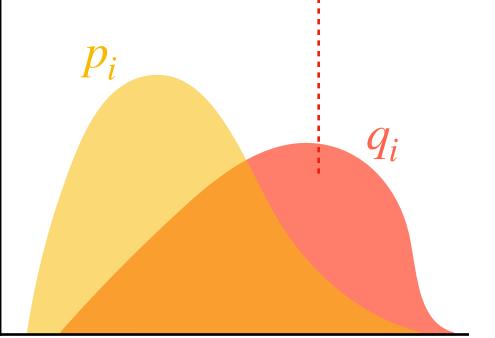
model M_a

	Token	<i>y</i> ₁	
		dogs	
Draft model (1B)	p_i	0.8	
Target model (100B)	q_i	0.9	

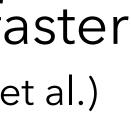
- Case 3: $q_i < p_i$ (reject) If $q_i <<< p_i$, we likely would have rejected it. In this case, we sample a new token from target model.
 - Specifically, we sample from $(q_i p_i)_+$

• Now, we can compare the probability of each token assigned by draft model M_p and target





- Speculative sampling uses idea of rejection sampling.
 - To sample from a easy-to-sample distribution p (small LM), in order to approximate sampling from a more complex distribution q (large LM).
- Using 4B LM as a draft model and 70B LM as a target model, we get 2~2.5x faster decoding speed with negligible performance difference!
- Considerations before use
 - M_p and M_q should be pre-trained with the same tokenization scheme! (e.g., GPT-2 and GPT-3 would work, but not GPT-3 and LLaMa-7B)
 - Hardware config matters: If you have 100 GPUs, running large model can actually be faster (rather than waiting for a small draft model that only takes up 10 GPU... => <u>GPU utilization bottleneck</u>, see page 5-6 in Chen et al.)



Decoding: Takeaways

- Decoding is still a challenging problem in NLG there's a lot more work to be done!
- Different decoding algorithms can allow us to inject biases that encourage different properties of coherent natural language generation
- Some of the most impactful advances in NLG of the last few years have come from simple but effective modifications to decoding algorithms