
Lecture 17: Natural language generation with LLMs
(cont’d)

COMP 3361 Natural Language Processing

Spring 2025

Many materials from CSE447@UW (Jaehun Jung) with special thanks!

Lecture 3: Tokenization

Announcements

• Assignment 3 is out, due on May 9th.

• Join #assignment-3 Slack channel for discussion

•

Lecture 3: Tokenization3

Latest AI news

Categorization of NLG tasks

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation4

Machine 
Translation Summarization Task-driven

Dialog
Chit-Chat
Dialog

Less open-ended generation: the input mostly determines the correct output generation.

More open-ended generation: the output distribution still has high degree of freedom.

Story
Generation

Less open-ended More open-ended

How to control open-endedness in ChatGPT?

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation5

ChatGPT API web interface

Decoding from LLMs

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation6

• At each time step t, our model computes a vector of scores for each token in our  
vocabulary, :

 

• Then, we compute a probability distribution over using these scores: 
 
 

• Our decoding algorithm defines a function to select a token from this distribution:

S ∈

P w ∈ V

S = f({y<t}; θ)
 is your modelf(⋅ ; θ)

P(yt = w |{y<t}) =
exp(Sw)

∑w′￼∈V exp(Sw′￼
)

̂yt = g(P(yt |{y<t}))
 is your decoding algorithmg(⋅)

How to find the most likely text to generate?

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation7

• Obvious method: Greedy Decoding

• Selects the highest probability token according to

 

• Beam Search

• Also aims to find the string with the highest probability, but with a wider exploration of
candidates.

P(yt |y<t)

̂yt = argmaxw∈V P(yt = w |y<t)

• Beam Search

• A form of best-first-search for the most likely string, but with a wider exploration of
candidates.

• Compared to greedy decoding, beam search gives a better approximation of  
brute-force search over all sequences

• A small overhead in computation due to beam width 
Time complexity: O(beam width * vocab size * generation length) 
 
* Naive brute-force search: O(vocab size ^ generation length), hence intractable!

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation8

How to find the most likely text to generate?

Note: Overall, greedy / beam search is widely used for low-entropy tasks like MT and summarization.

But, are greedy sequences always the best solution?🤔

Also, are greedy methods reasonable for open-ended
generation?

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation9
(Holtzman et al. ICLR 2020)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Pr
ob

ab
ili
ty

�i���t��

��a� ��ar�� ���t i� ���� ��r�ri�i��

��a� ��ar��
���a�

Greedy methods fail to capture the variance of human text distribution.

Lecture 3: Tokenization10

Sampling generation from LLMs

Time to get random: Sampling

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation11

• Sample a token from the token distribution at each step!

• It's inherently random so you can sample any token.

̂yt ∼ P(yt = w |{y}<t)

restroom
grocery

store
airport

bathroom
beach
doctor

hospital
pub
gym
his

He wanted

to go to the Model

Decoding: Top-k Sampling

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation12

• Problem: Vanilla sampling makes every token in the vocabulary an option

• Even if most of the probability mass in the distribution is over a limited set of options, the
tail of the distribution could be very long and in aggregate have considerable mass
(statistics speak: we have “heavy tailed” distributions)

• Many tokens are probably really wrong in the current context.

• Although each of them may be assigned a small probability, in aggregate they still get a
high chance to be selected. 

• Solution: Top-k sampling (Fan et al., 2018)

• Only sample from the top k tokens in the probability distribution.

Decoding: Top-k Sampling

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation13

• Solution: Top-k sampling (Fan et al., 2018)

• Only sample from the top k tokens in the probability distribution.

• Common values for k = 10, 20, 50 (but it's up to you!) 
 
 
 
 
 
 

• Increasing k yields more diverse, but risky outputs

• Decreasing k yields more safe but generic outputs

He wanted

to go to the Model

restroom
grocery

store
airport

bathroom
beach
doctor

hospital
pub
gym
his

Issues with Top-k Sampling

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation14

For flat distribution, 
Top-k Sampling may cut off too quickly!

For peaked distribution,

Top-k Sampling may also cut off too slowly!

Decoding: Top-p (Nucleus) Sampling

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation15

• Problem: The token distributions we sample from are dynamic

• When the distribution is flat, small removes many viable options.

• When the distribution is peaked, large allows too many options a chance to be
selected. 

• Solution: Top-p sampling (Holtzman et al., 2020)

• Sample from all tokens in the top cumulative probability mass (i.e., where mass is
concentrated)

• Varies according to the uniformity of

Pt k
Pt k

p

k Pt

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation16

• Solution: Top-p sampling (Holtzman et al., 2020)

• Sample from all tokens in the top cumulative probability mass (i.e., where mass is
concentrated)

• Varies according to the uniformity of

p

k Pt

p=0.2

Pt(yt = w |{y}<t) Pt(yt = w |{y}<t)

p=0.12 p=0.8

Pt(yt = w |{y}<t)

Decoding: Top-p (Nucleus) Sampling

Scaling randomness: Softmax temperature

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation17

• Recall: At time step t, model computes a distribution by applying softmax to a vector of
scores

•Here, you can apply temperature hyperparameter to the softmax to rebalance :

• Raise the temperature : becomes more uniform

• More diverse output (probability is spread across vocabulary)

• Lower the temperature : becomes more spiky

• Less diverse output (probability concentrated to the top tokens)

Pt
S ∈ ℝ|V|

τ Pt

τ > 1 Pt

τ < 1 Pt

Pt(yt = w |{y<t}) =
exp(Sw)

∑w′￼∈V exp(Sw′￼
)

Pt(yt = w |{y<t}) =
exp(Sw/τ)

∑w′￼∈V exp(Sw′￼
/τ)

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation18

• You can apply temperature hyperparameter to the softmax to rebalance :

• Raise the temperature : becomes more uniform

• More diverse output (probability is spread across vocabulary)

• Lower the temperature : becomes more spiky

• Less diverse output (probability concentrated to the top tokens)

τ Pt

τ > 1 Pt

τ < 1 Pt

Pt(yt = w |{y<t}) =
exp(Sw/τ)

∑w′￼∈V exp(Sw′￼
/τ)

Scaling randomness: Softmax temperature

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation19

• You can apply temperature hyperparameter to the softmax to rebalance :

• Raise the temperature : becomes more uniform

• More diverse output (probability is spread across vocabulary)

• Lower the temperature : becomes more spiky

• Less diverse output (probability concentrated to the top tokens)

τ Pt

τ > 1 Pt

τ < 1 Pt

Pt(yt = w |{y<t}) =
exp(Sw/τ)

∑w′￼∈V exp(Sw′￼
/τ)

NOTE: Temperature is a hyperparameter for decoding algorithm,
not an algorithm itself! It can be applied for both beam search and

sampling methods.

Scaling randomness: Softmax temperature

Toward better generation: Re-ranking

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation20

• Problem: What if I already have decoded a bad sequence from my model?

• Decode a bunch of sequences

• Sample 10, 20, 50, ... sequences with the same input given

• Define a score to approximate quality of sequences and re-rank by this score

• Simplest score: (low) perplexity

• Careful! Remember that even the repetitive sequences get low perplexity in general...

• Re-rankers can evaluate a variety of properties:

• Style (Holtzman et al., 2018), Discourse (Gabriel et al., 2021), Factuality (Goyal et al.,
2020), Logical Consistency (Jung et al. 2022), and many more

• Can compose multiple re-rankers together.

n =

Lecture 3: Tokenization21

Speeding-up generation from LLMs

• Problem: Generating with a large LM takes a long time 

• Intuition: Not all tokens are equally hard to generate! 
 
 
 
 
 

• Idea: Use a generation from small LM to assist large LM generation 
* Same idea independently proposed from DeepMind and Google - see Chen et al., 2023; Leviathan et al., 2023 

Speeding-up generation: Speculative Sampling

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation22

 100B LM

Bruce Lee attended
the University

of

 100B LM

Bruce Lee attended
the University of

Washington

Easy to predict: 
May be a 1B LM
can predict this too

Hard to predict: 
Can really make use
of the 100B LM here

• First, sample a draft of length K (= 5 in this example) from a small LM Mp

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation23

y1 ∼ p(⋅ |x), y2 ∼ p(⋅ |x, y1), ⋯, y5 ∼ p(⋅ |x, y1, y2, y3, y4)
Input prefix

• Then, compute the token distribution at each time step with a large target LM  Mq
q(⋅ |x), q(⋅ |x, y1), q(⋅ |x, y1, y2), ⋯, q(⋅ |x, y1, ⋯, y5)

Next token distribution of , when given Mq x, y1, y2

• Let's denote and  
 e.g., , i.e. next token distribution predicted by the target model ,  
 when given and

pi = p(⋅ |x, y1, ⋯, yi−1) qi = q(⋅ |x, y1, ⋯yi−1)
q2 = q(⋅ |x, y1) Mq

x y1

• Note: This can be computed in a single forward pass of (Why?)Mq

Speeding-up generation: Speculative Sampling

• Now, we can compare the probability of each token assigned by draft model and target
model

Mp
Mq

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation24

Draft model (1B)

Target model (100B)

Token

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

y1 y2 y3 y4 y5

pi

qi

• Starting from , decide whether or not to accept the tokens generated by the draft model.y1

Speeding-up generation: Speculative Sampling

• Now, we can compare the probability of each token assigned by draft model and target
model

Mp
Mq

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation25

Draft model (1B)

Target model (100B)

Token

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

y1 y2 y3 y4 y5

pi

qi

• Starting from , decide whether or not to accept the tokens generated by the draft model.y1

• Case 1:  
The target model (100B) likes this token, even more
than the draft model (which generated it). 
 => Accept this token!

qi ≥ pi

Generation after step 1: 
dogs

Speeding-up generation: Speculative Sampling

• Now, we can compare the probability of each token assigned by draft model and target
model

Mp
Mq

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation26

Draft model (1B)

Target model (100B)

Token

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

y1 y2 y3 y4 y5

pi

qi

• Starting from , decide whether or not to accept the tokens generated by the draft model.y1

• Case 1:  
The target model (100B) likes this token, even more
than the draft model (which generated it). 
 => Accept this token!

qi ≥ pi

Generation after step 2: 
dogs love

Speeding-up generation: Speculative Sampling

• Now, we can compare the probability of each token assigned by draft model and target
model

Mp
Mq

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation27

Draft model (1B)

Target model (100B)

Token

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

y1 y2 y3 y4 y5

pi

qi

• Case 2: (accept) 
Target model doesn't like this token as much as the
draft model... 
=> Accept it with the probability

qi < pi

qi

pi

Generation after step 3: 
dogs love chasing

In this example, assume
we accepted it with
prob=0.8/0.9

Speeding-up generation: Speculative Sampling

• Now, we can compare the probability of each token assigned by draft model and target
model

Mp
Mq

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation28

Draft model (1B)

Target model (100B)

Token

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

y1 y2 y3 y4 y5

pi

qi

• Case 3: (reject) 
If <<< , we likely would have rejected it. 
In this case, we sample a new token from target model.

qi < pi
qi pi

qi

pi

Sample only from this region!

• Specifically, we sample from (qi − pi)+

Speeding-up generation: Speculative Sampling

• Speculative sampling uses idea of rejection sampling.

• To sample from a easy-to-sample distribution p (small LM), in order to approximate
sampling from a more complex distribution q (large LM). 

• Using 4B LM as a draft model and 70B LM as a target model, 
 we get 2~2.5x faster decoding speed with negligible performance difference! 

• Considerations before use

• and should be pre-trained with the same tokenization scheme!  

(e.g., GPT-2 and GPT- 3 would work, but not GPT-3 and LLaMa-7B)

• Hardware config matters: If you have 100 GPUs, running large model can actually be faster 

(rather than waiting for a small draft model that only takes up 10 GPU... => GPU utilization bottleneck, see page 5-6 in Chen et al.)

Mp Mq

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation29

Speeding-up generation: Speculative Sampling

Decoding: Takeaways

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation30

• Decoding is still a challenging problem in NLG - there's a lot more work to be done! 

• Different decoding algorithms can allow us to inject biases that encourage different  
properties of coherent natural language generation 

• Some of the most impactful advances in NLG of the last few years have come from  
simple but effective modifications to decoding algorithms

