
Lecture 17: Natural language generation with LLMs 
(cont’d)

COMP 3361 Natural Language Processing

Spring 2025

Many materials from CSE447@UW (Jaehun Jung) with special thanks!
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Announcements

• Assignment 3 is out, due on May 9th.

• Join #assignment-3 Slack channel for discussion


•
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Latest AI news



Categorization of NLG tasks
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Machine 
Translation Summarization Task-driven 

Dialog
Chit-Chat 
Dialog

Less open-ended generation: the input mostly determines the correct output generation.


More open-ended generation: the output distribution still has high degree of freedom.

Story 
Generation

Less open-ended More open-ended



How to control open-endedness in ChatGPT?
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ChatGPT API web interface



Decoding from LLMs
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• At each time step t, our model computes a vector of scores for each token in our  
vocabulary,       :


 

• Then, we compute a probability distribution  over  using these scores: 
 
 

• Our decoding algorithm defines a function to select a token from this distribution:

S ∈

P w ∈ V

S = f({y<t}; θ)
 is your modelf( ⋅ ; θ)

P(yt = w |{y<t}) =
exp(Sw)

∑w′￼∈V exp(Sw′￼
)

̂yt = g(P(yt |{y<t}))
 is your decoding algorithmg( ⋅ )



How to find the most likely text to generate?
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• Obvious method: Greedy Decoding

• Selects the highest probability token according to 


 

• Beam Search


• Also aims to find the string with the highest probability, but with a wider exploration of 
candidates.

P(yt |y<t)

̂yt = argmaxw∈V P(yt = w |y<t)



• Beam Search


• A form of best-first-search for the most likely string, but with a wider exploration of 
candidates.


• Compared to greedy decoding, beam search gives a better approximation of  
brute-force search over all sequences


• A small overhead in computation due to beam width 
Time complexity: O(beam width * vocab size * generation length) 
 
* Naive brute-force search: O(vocab size ^ generation length), hence intractable!
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How to find the most likely text to generate?

Note: Overall, greedy / beam search is widely used for low-entropy tasks like MT and summarization.

But, are greedy sequences always the best solution?🤔



Also, are greedy methods reasonable for open-ended 
generation?
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(Holtzman et al. ICLR 2020)
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Greedy methods fail to capture the variance of human text distribution.
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Sampling generation from LLMs



Time to get random: Sampling
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• Sample a token from the token distribution at each step!


• It's inherently random so you can sample any token.

̂yt ∼ P(yt = w |{y}<t)

restroom
grocery

store
airport

bathroom
beach
doctor

hospital
pub
gym
his

He wanted

to go to the Model



Decoding: Top-k Sampling
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• Problem: Vanilla sampling makes every token in the vocabulary an option

• Even if most of the probability mass in the distribution is over a limited set of options, the 
tail of the distribution could be very long and in aggregate have considerable mass 
(statistics speak: we have “heavy tailed” distributions) 


• Many tokens are probably really wrong in the current context.

• Although each of them may be assigned a small probability, in aggregate they still get a 
high chance to be selected. 

• Solution: Top-k sampling (Fan et al., 2018)

• Only sample from the top k tokens in the probability distribution.



Decoding: Top-k Sampling
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• Solution: Top-k sampling (Fan et al., 2018)

• Only sample from the top k tokens in the probability distribution.

• Common values for k = 10, 20, 50 (but it's up to you!) 
 
 
 
 
 
 

• Increasing k yields more diverse, but risky outputs

• Decreasing k yields more safe but generic outputs


He wanted

to go to the Model

restroom
grocery

store
airport

bathroom
beach
doctor

hospital
pub
gym
his



Issues with Top-k Sampling
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For flat distribution, 
Top-k Sampling may cut off too quickly!

For peaked distribution,

Top-k Sampling may also cut off too slowly!



Decoding: Top-p (Nucleus) Sampling
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• Problem: The token distributions we sample from are dynamic

• When the distribution  is flat, small  removes many viable options.

• When the distribution  is peaked, large  allows too many options a chance to be 
selected. 

• Solution: Top-p sampling (Holtzman et al., 2020)

• Sample from all tokens in the top  cumulative probability mass (i.e., where mass is 
concentrated)


• Varies  according to the uniformity of 


Pt k
Pt k

p

k Pt



Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation16

• Solution: Top-p sampling (Holtzman et al., 2020)

• Sample from all tokens in the top  cumulative probability mass (i.e., where mass is 
concentrated)


• Varies  according to the uniformity of 


p

k Pt

p=0.2

Pt(yt = w |{y}<t) Pt(yt = w |{y}<t)

p=0.12 p=0.8

Pt(yt = w |{y}<t)

Decoding: Top-p (Nucleus) Sampling



Scaling randomness: Softmax temperature
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• Recall: At time step t, model computes a distribution  by applying softmax to a vector of 
scores 


•Here, you can apply temperature hyperparameter  to the softmax to rebalance :


• Raise the temperature :  becomes more uniform

• More diverse output (probability is spread across vocabulary)


• Lower the temperature :  becomes more spiky

• Less diverse output (probability concentrated to the top tokens)

Pt
S ∈ ℝ|V|

τ Pt

τ > 1 Pt

τ < 1 Pt

Pt(yt = w |{y<t}) =
exp(Sw)

∑w′￼∈V exp(Sw′￼
)

Pt(yt = w |{y<t}) =
exp(Sw/τ)

∑w′￼∈V exp(Sw′￼
/τ)
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• You can apply temperature hyperparameter  to the softmax to rebalance :


• Raise the temperature :  becomes more uniform

• More diverse output (probability is spread across vocabulary)


• Lower the temperature :  becomes more spiky

• Less diverse output (probability concentrated to the top tokens)

τ Pt

τ > 1 Pt

τ < 1 Pt

Pt(yt = w |{y<t}) =
exp(Sw/τ)

∑w′￼∈V exp(Sw′￼
/τ)

Scaling randomness: Softmax temperature
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• You can apply temperature hyperparameter  to the softmax to rebalance :


• Raise the temperature :  becomes more uniform

• More diverse output (probability is spread across vocabulary)


• Lower the temperature :  becomes more spiky

• Less diverse output (probability concentrated to the top tokens)

τ Pt

τ > 1 Pt

τ < 1 Pt

Pt(yt = w |{y<t}) =
exp(Sw/τ)

∑w′￼∈V exp(Sw′￼
/τ)

NOTE: Temperature is a hyperparameter for decoding algorithm, 
not an algorithm itself! It can be applied for both beam search and 

sampling methods.

Scaling randomness: Softmax temperature



Toward better generation: Re-ranking
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• Problem: What if I already have decoded a bad sequence from my model?


• Decode a bunch of sequences

• Sample 10, 20, 50, ... sequences with the same input given


• Define a score to approximate quality of sequences and re-rank by this score

• Simplest score: (low) perplexity


• Careful! Remember that even the repetitive sequences get low perplexity in general...

• Re-rankers can evaluate a variety of properties:


• Style (Holtzman et al., 2018), Discourse (Gabriel et al., 2021), Factuality (Goyal et al., 
2020), Logical Consistency (Jung et al. 2022), and many more


• Can compose multiple re-rankers together.

n =
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Speeding-up generation from LLMs



• Problem: Generating with a large LM takes a long time 

• Intuition: Not all tokens are equally hard to generate! 
 
 
 
 
 

• Idea: Use a generation from small LM to assist large LM generation 
* Same idea independently proposed from DeepMind and Google - see Chen et al., 2023; Leviathan et al., 2023 

Speeding-up generation: Speculative Sampling
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     100B LM

Bruce Lee attended 
the University

of

     100B LM

Bruce Lee attended 
the University of

Washington

Easy to predict: 
May be a 1B LM 
can predict this too

Hard to predict: 
Can really make use 
of the 100B LM here



• First, sample a draft of length K (= 5 in this example) from a small LM Mp
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y1 ∼ p( ⋅ |x), y2 ∼ p( ⋅ |x, y1), ⋯, y5 ∼ p( ⋅ |x, y1, y2, y3, y4)
Input prefix

• Then, compute the token distribution at each time step with a large target LM  Mq
q( ⋅ |x), q( ⋅ |x, y1), q( ⋅ |x, y1, y2), ⋯, q( ⋅ |x, y1, ⋯, y5)

Next token distribution of , when given Mq x, y1, y2

• Let's denote  and  
 e.g., , i.e. next token distribution predicted by the target model ,  
 when given  and 

pi = p( ⋅ |x, y1, ⋯, yi−1) qi = q( ⋅ |x, y1, ⋯yi−1)
q2 = q( ⋅ |x, y1) Mq

x y1

• Note: This can be computed in a single forward pass of  (Why?)Mq

Speeding-up generation: Speculative Sampling



• Now, we can compare the probability of each token assigned by draft model  and target 
model 

Mp
Mq
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Draft model (1B)

Target model (100B)

Token  

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

y1 y2 y3 y4 y5

pi

qi

• Starting from , decide whether or not to accept the tokens generated by the draft model.y1

Speeding-up generation: Speculative Sampling



• Now, we can compare the probability of each token assigned by draft model  and target 
model 

Mp
Mq
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Draft model (1B)

Target model (100B)

Token  

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

y1 y2 y3 y4 y5

pi

qi

• Starting from , decide whether or not to accept the tokens generated by the draft model.y1

• Case 1:  
The target model (100B) likes this token, even more 
than the draft model (which generated it). 
 => Accept this token!

qi ≥ pi

Generation after step 1: 
dogs

Speeding-up generation: Speculative Sampling



• Now, we can compare the probability of each token assigned by draft model  and target 
model 

Mp
Mq
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Draft model (1B)

Target model (100B)

Token  

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

y1 y2 y3 y4 y5

pi

qi

• Starting from , decide whether or not to accept the tokens generated by the draft model.y1

• Case 1:  
The target model (100B) likes this token, even more 
than the draft model (which generated it). 
 => Accept this token!

qi ≥ pi

Generation after step 2: 
dogs love

Speeding-up generation: Speculative Sampling



• Now, we can compare the probability of each token assigned by draft model  and target 
model 

Mp
Mq
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Draft model (1B)

Target model (100B)

Token  

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

y1 y2 y3 y4 y5

pi

qi

• Case 2:  (accept) 
Target model doesn't like this token as much as the 
draft model... 
=> Accept it with the probability 

qi < pi

qi

pi

Generation after step 3: 
dogs love chasing

In this example, assume 
we accepted it with 
prob=0.8/0.9

Speeding-up generation: Speculative Sampling



• Now, we can compare the probability of each token assigned by draft model  and target 
model 

Mp
Mq
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Draft model (1B)

Target model (100B)

Token  

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

y1 y2 y3 y4 y5

pi

qi

• Case 3:  (reject) 
If  <<< , we likely would have rejected it. 
In this case, we sample a new token from target model.

qi < pi
qi pi

qi

pi

Sample only from this region!

• Specifically, we sample from (qi − pi)+

Speeding-up generation: Speculative Sampling



• Speculative sampling uses idea of rejection sampling.

• To sample from a easy-to-sample distribution p (small LM), in order to approximate 
sampling from a more complex distribution q (large LM). 

• Using 4B LM as a draft model and 70B LM as a target model, 
 we get 2~2.5x faster decoding speed with negligible performance difference! 

• Considerations before use

•  and  should be pre-trained with the same tokenization scheme!  

(e.g., GPT-2 and GPT- 3 would work, but not GPT-3 and LLaMa-7B)

• Hardware config matters: If you have 100 GPUs, running large model can actually be faster 

(rather than waiting for a small draft model that only takes up 10 GPU... => GPU utilization bottleneck, see page 5-6 in Chen et al.)

Mp Mq
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Speeding-up generation: Speculative Sampling



Decoding: Takeaways

Natural Language Processing - CSE 517 / CSE 447 Lecture 4: Natural Language Generation30

• Decoding is still a challenging problem in NLG - there's a lot more work to be done! 

• Different decoding algorithms can allow us to inject biases that encourage different  
properties of coherent natural language generation 

• Some of the most impactful advances in NLG of the last few years have come from  
simple but effective modifications to decoding algorithms


