

COMP 3361 Natural Language Processing

Lecture 14: Pre-training and large language models (cont.)

Announcements

- Assignment 2 is due next Tuesday
 - Join #assignment-2 Slack channel for discussion
- TA will give a coding tutorial on Transformers and assignment 2 this Friday

Lecture plan

- Neural language models: recap
- Traditional to modern NLP
 - Traditional learning paradigm
 - Supervised training/fine-tuning only, NO pre-training
 - Modern learning paradigm
 - Pretrain + fine-tuning, pretrain + prompting/in-context learning
- Pretraining overview: BERT, T5, GPT

Traditional to modern NLP: training paradigm

Neural language models: BERT, GPT N-gram language models Neural models: Transformers Traditional models: Naive Bayes Static embeddings: word2vec Contextual embeddings: BERT, GPT New learning paradigm: Pretrain, ICL Traditional learning paradigm

Question: How to train and use neural language models for different NLP tasks?

Traditional learning paradigm

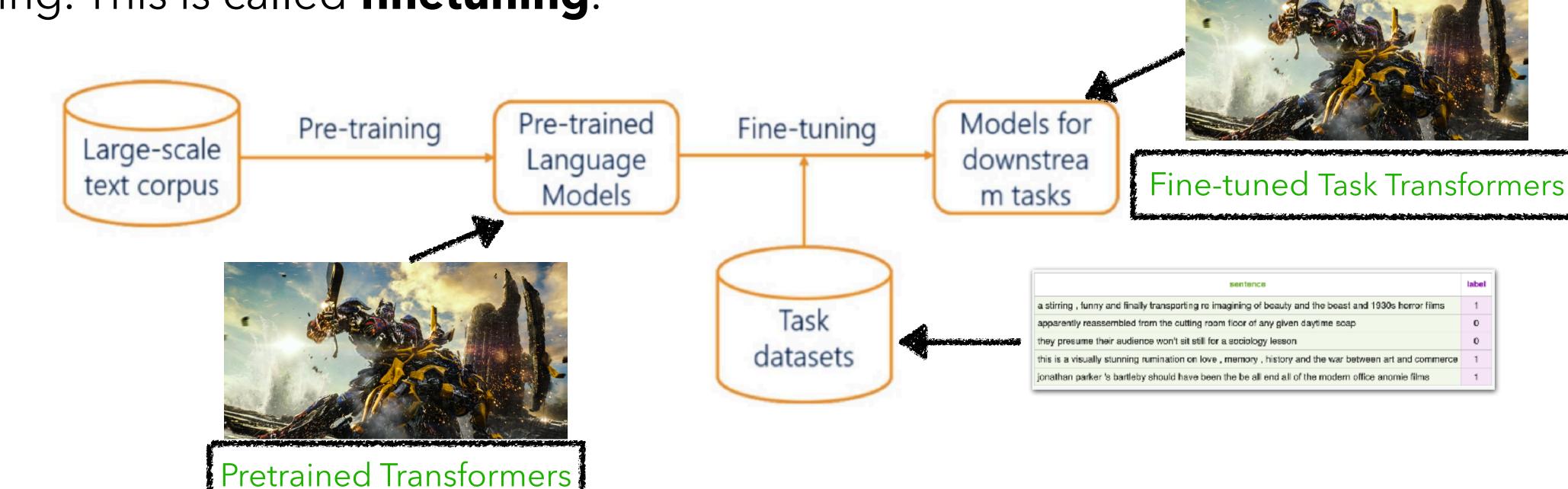
- Supervised training/fine-tuning only, NO pre-training
 - Collect (x, y) task training pairs
 - \bullet Randomly initialize your models f(x) (e.g., vanilla Transformers)
 - Train f(x) on (x, y) pairs

Then you get a trained Transformers **ONLY** for sentiment analysis The model can be: NB, LR, RNNs, LSTM too

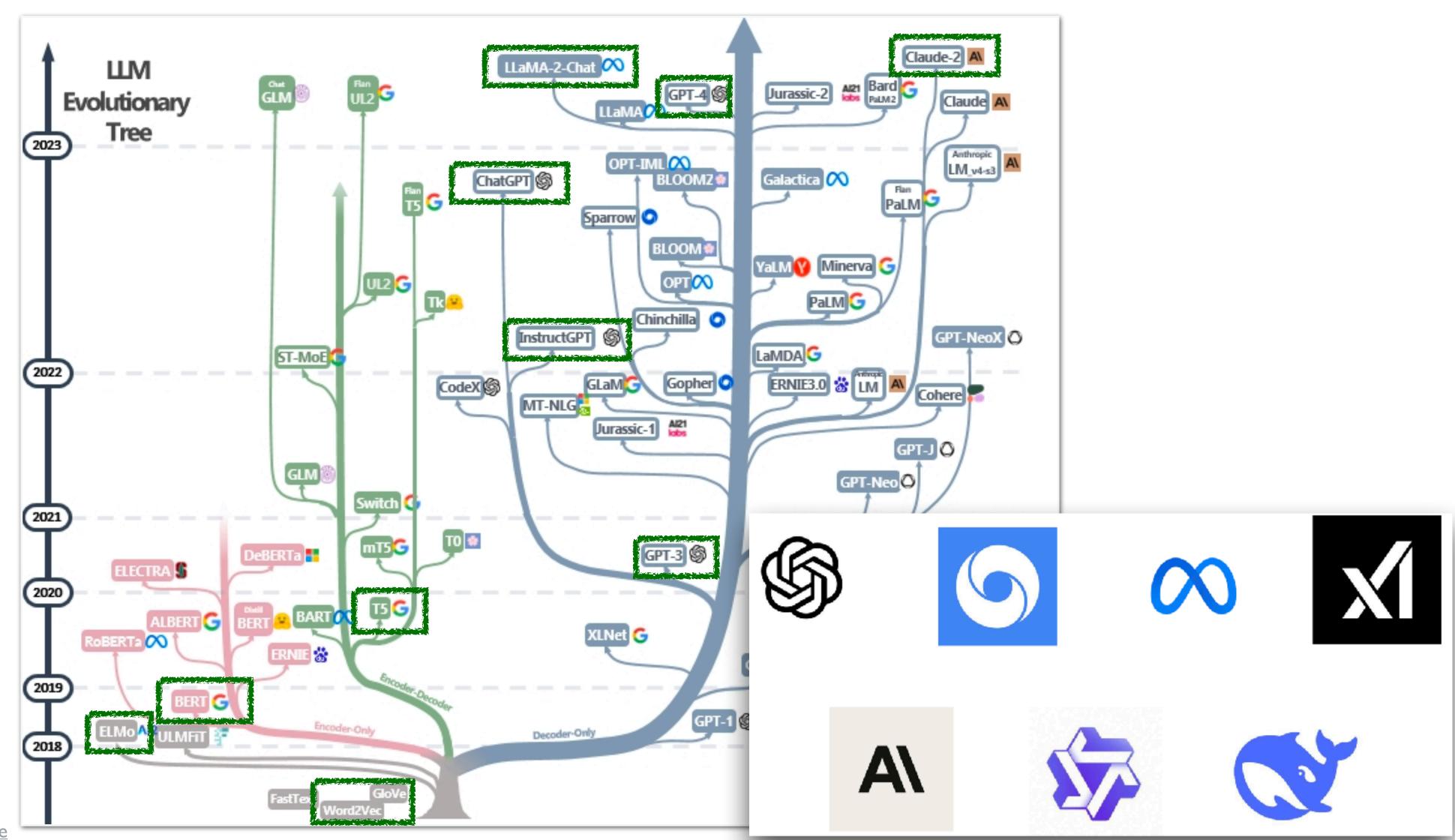
Modern learning paradigm

- Pre-training + supervised training/fine-tuning
 - First train Transformer using a lot of general text using unsupervised learning. This is called **pretraining**.

• Then train the pretrained Transformer for a specific task using supervised learning. This is called **finetuning**.



Evolution tree of pretrained LMs



Latest learning paradigm with LLMs

- Pre-training + prompting/in-context learning (no training this step)
 - First train a large (>7~175B) Transformer using a lot of general text using unsupervised learning. This is called large language model pretraining.
 - Then **directly use** the pretrained large Transformer (**no further finetuning/training**) for any different task given only a natural language description of the task or a few task (x, y) examples. This is called **prompting/in-context**

learning.

Zero-shot prompting

Translate English to French:

sea otter => loutre de mer

peppermint => menthe poivrée

plush girafe => girafe peluche

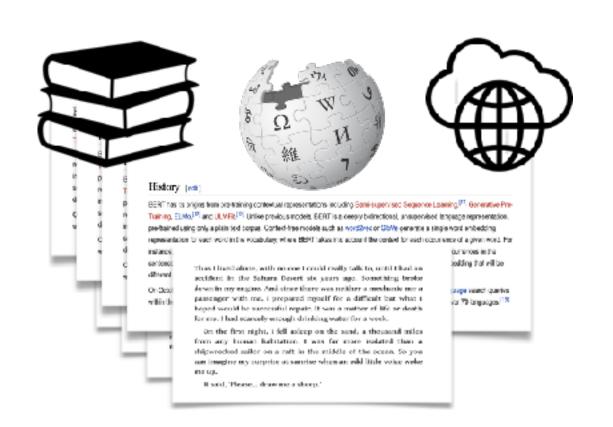
cheese =>

prompt

Few-shot prompting/in-context learning

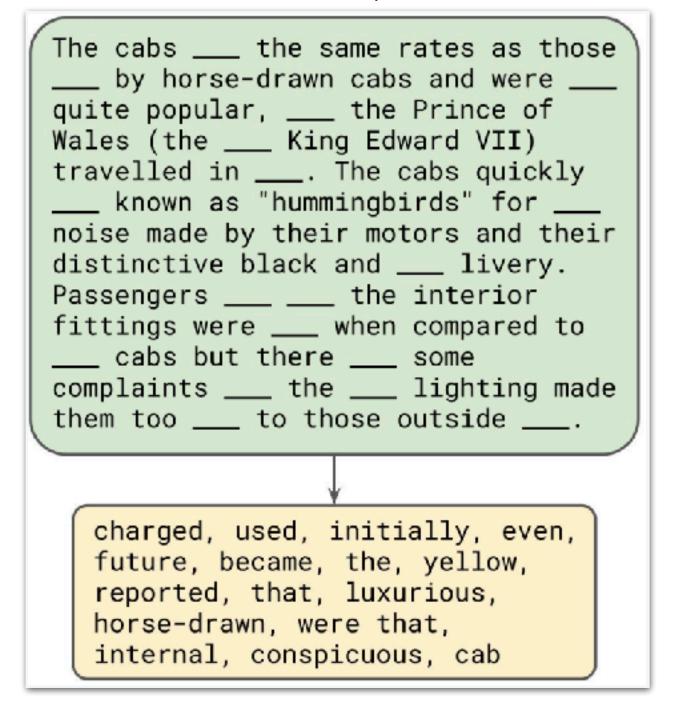
Pretraining: training objectives?

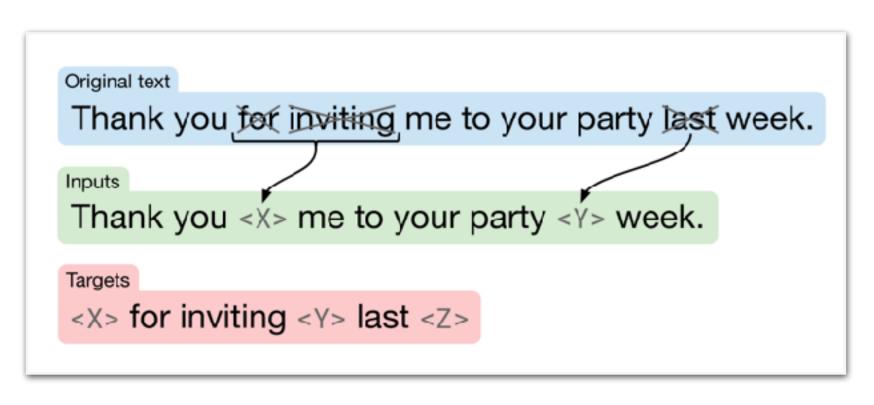
- During pretraining, we have a large text corpus (no task labels)
 - Key question: what labels or objectives used to train the vanilla Transformers?

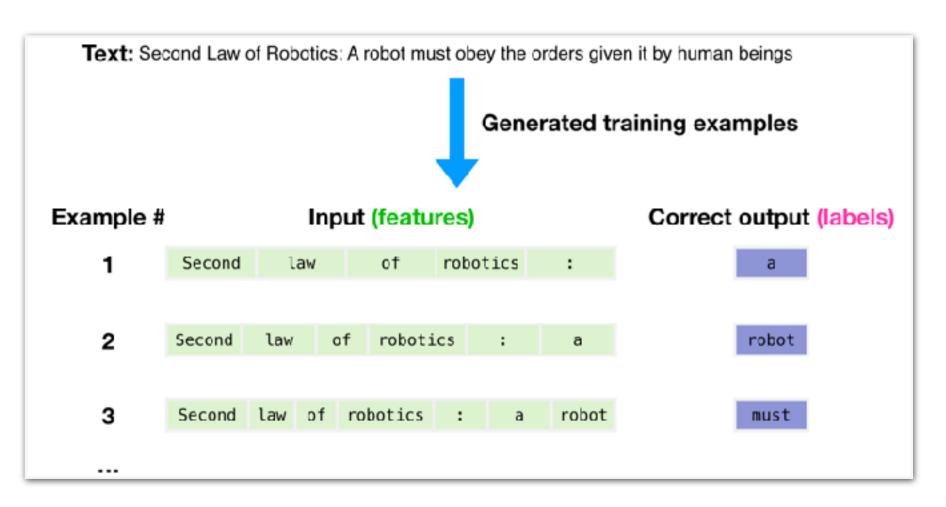


Pretraining: training objectives?

Devlin et al., 2018







Masked token prediction

Denoising span-mask prediction

Next token prediction

Pre-training architectures

Encoder

Encoder-Decoder

Decoder

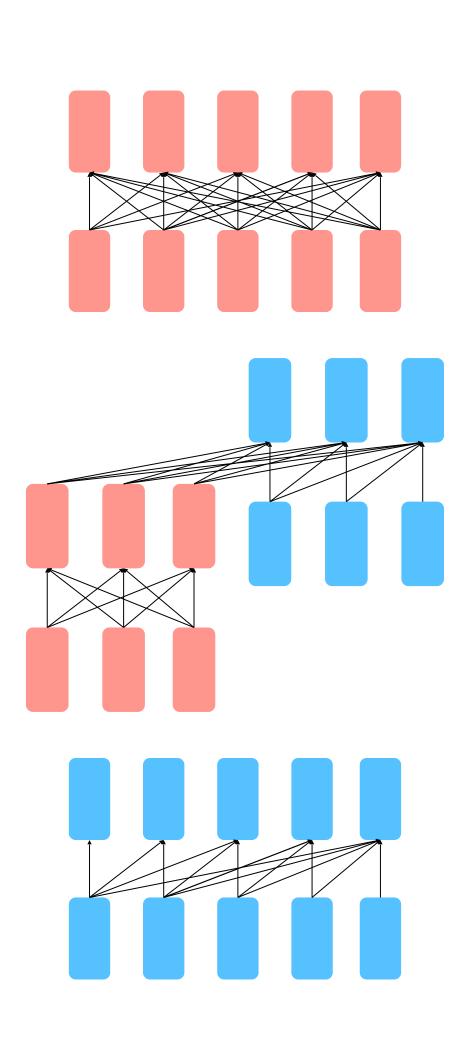
- E.g., BERT, RoBERTa, DeBERTa, ...
- Autoencoder model
- Masked language modeling
- E.g., T5, BART, ...
- seq2seq model
- E.g., GPT, GPT2, GPT3, ...
- Autoregressive model
- Left-to-right language modeling

Pre-training architectures

Encoder

Encoder-Decoder

Decoder

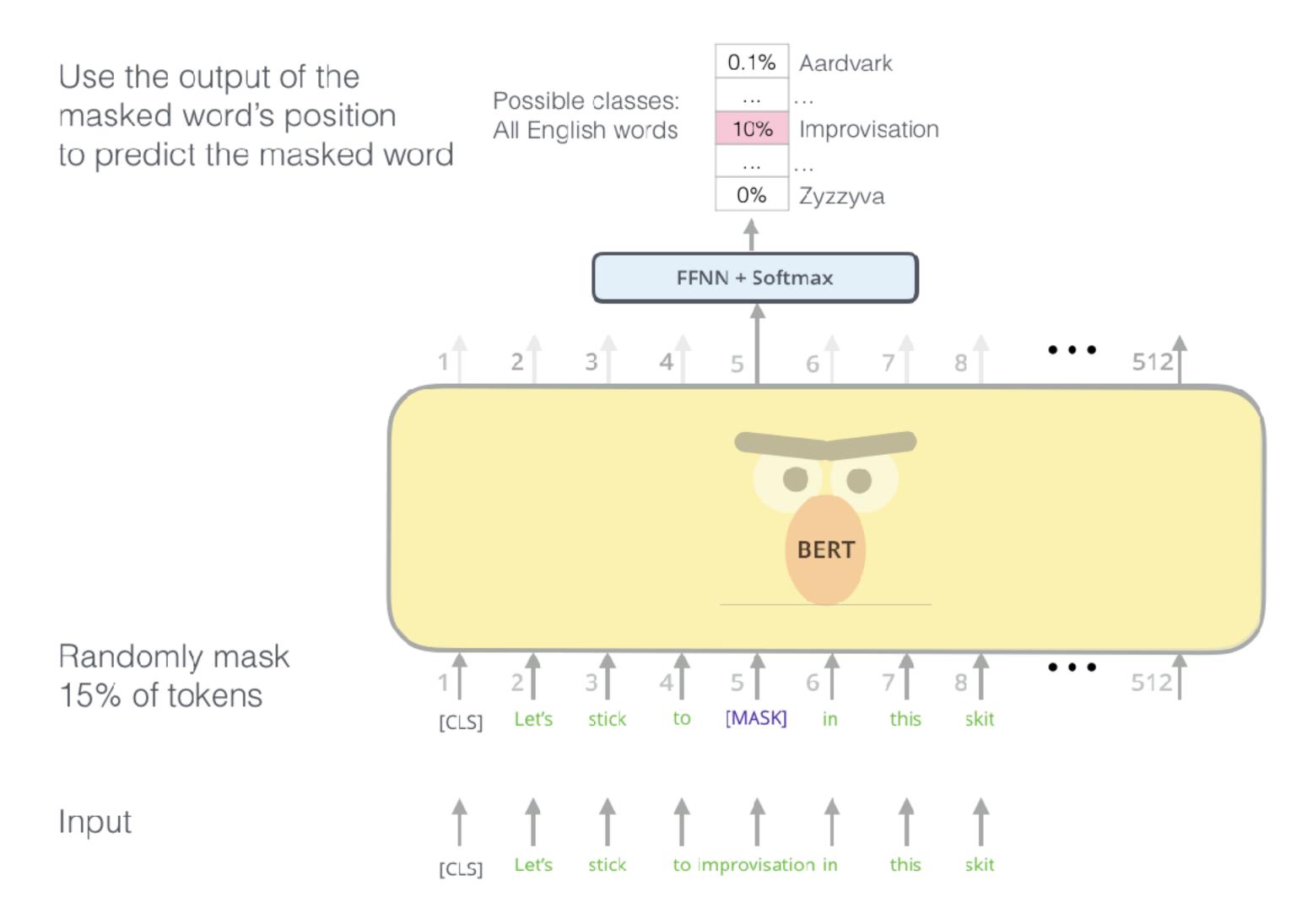


 Bidirectional; can condition on the future context

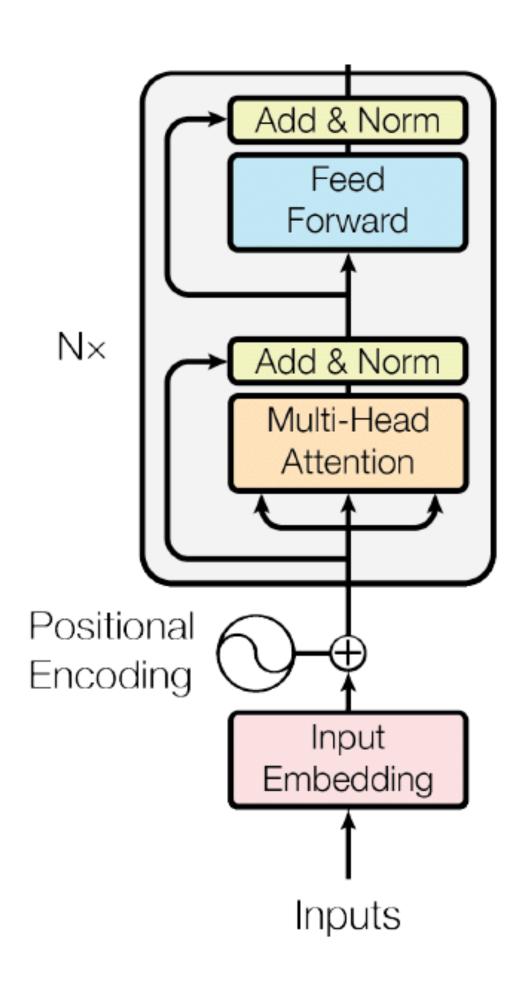
 Map two sequences of different length together

 Language modeling; can only condition on the past context

Masked Language Modeling (MLM)



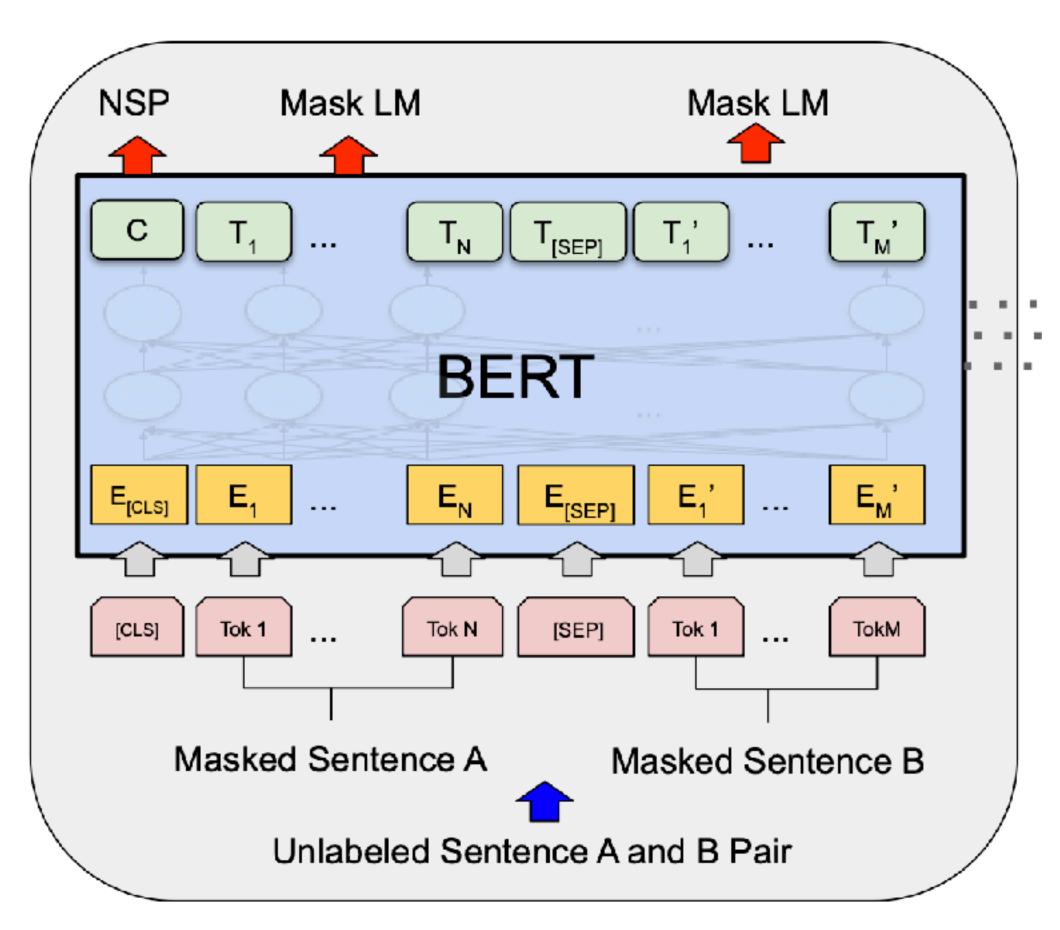
BERT pre-training



- BERT-base: 12 layers, 768 hidden size, 12 attention heads, 110M parameters
- BERT-large: 24 layers, 1024 hidden size, 16 attention heads, 340M parameters

- Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B)
- Max sequence size: 512 wordpiece tokens (roughly 256 and 256 for two non-contiguous sequences)
- Trained for 1M steps, batch size 128k

BERT pre-training

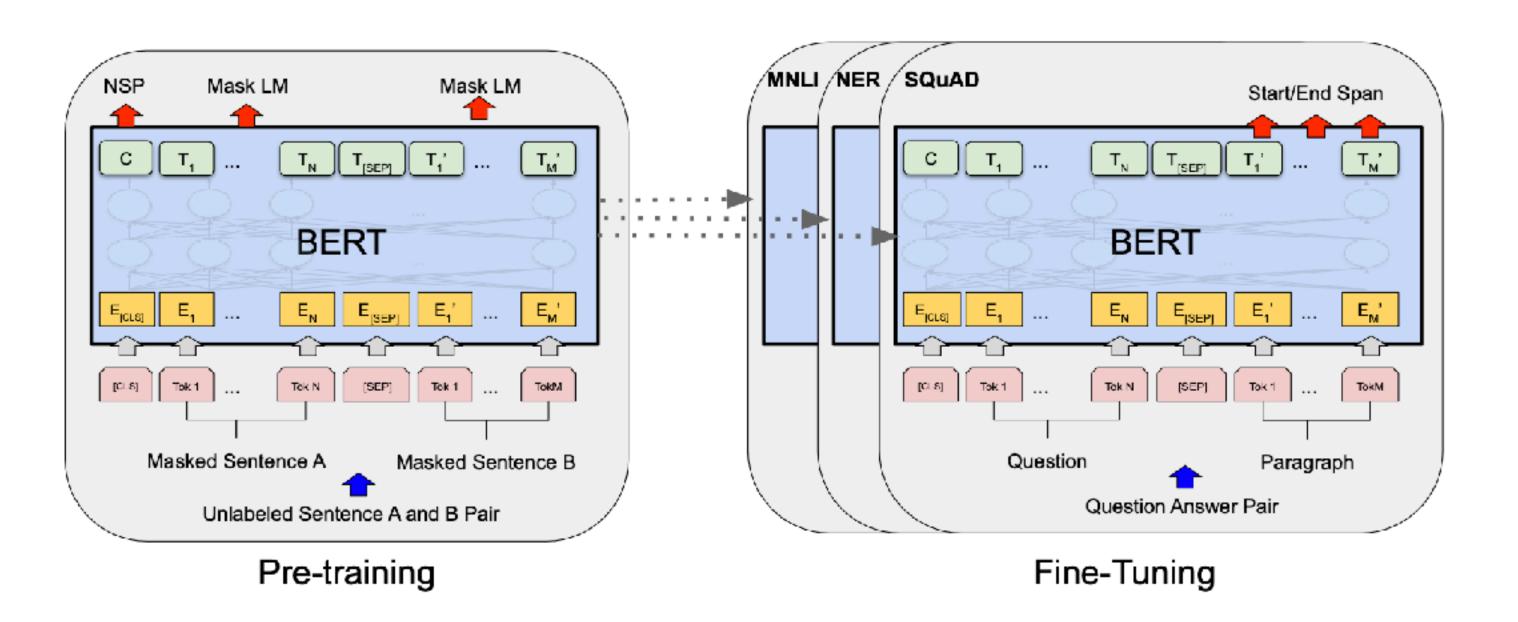


Pre-training

- MLM and NSP are trained together
- [CLS] is pre-trained for NSP
- Other token representations are trained for MLM

Pretraining / fine-tuning

"Pre-train" a model on a large dataset for task X, then "fine-tune" it on a dataset for task Y



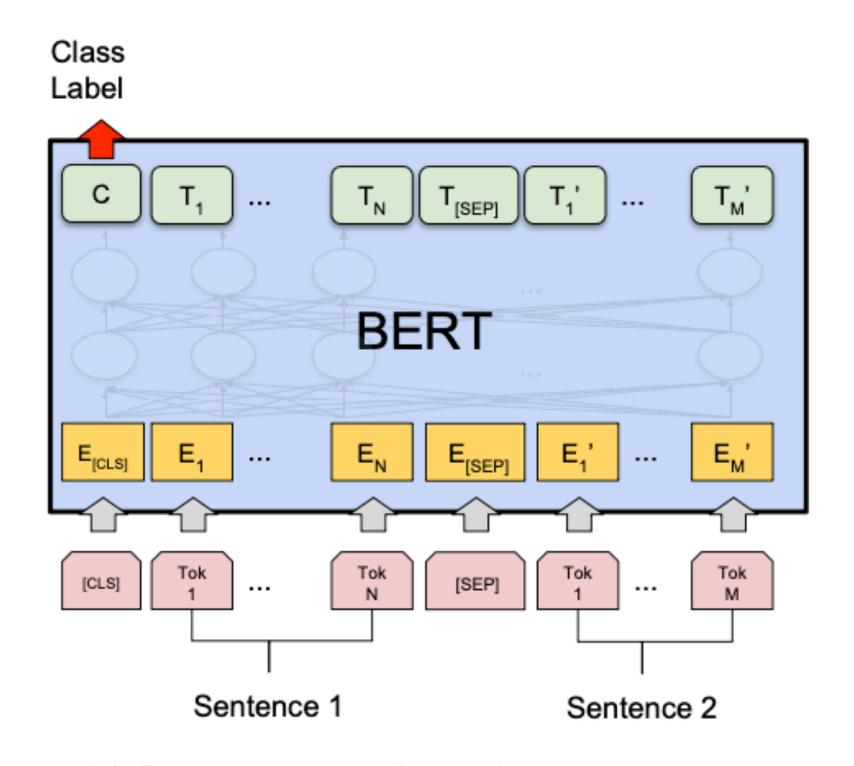
"Fine-tuning is the process of taking the network learned by these pre-trained models, and further training the model, often via an added neural net classifier that takes the top layer of the network as input, to perform some downstream task."

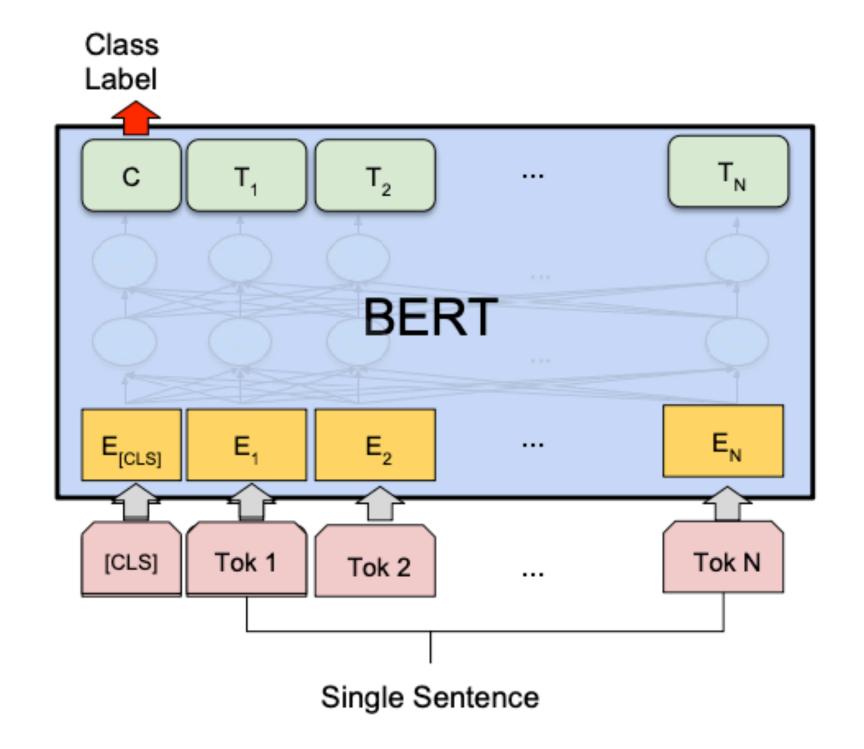
Fine-tuning is a training process and takes gradient descent steps!

BERT fine-tuning

"Pretrain once, finetune many times."

sentence-level tasks





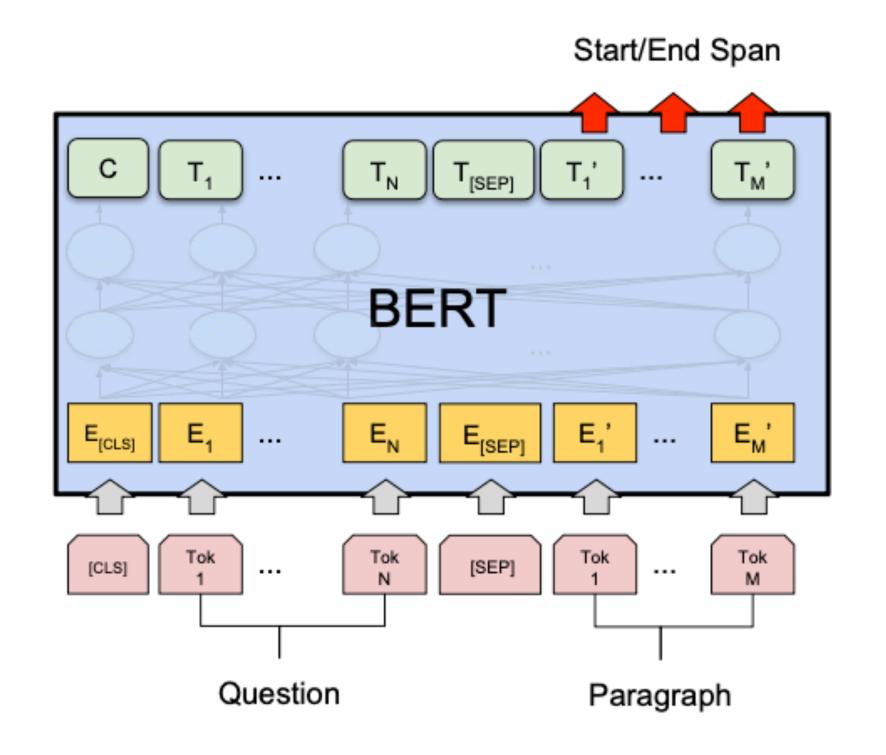
(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

- (b) Single Sentence Classification Tasks: SST-2, CoLA
- **QQP:** Quora Question Pairs (detect paraphrase questions)
- **QNLI:** natural language inference over question answering data
- **SST-2:** sentiment analysis

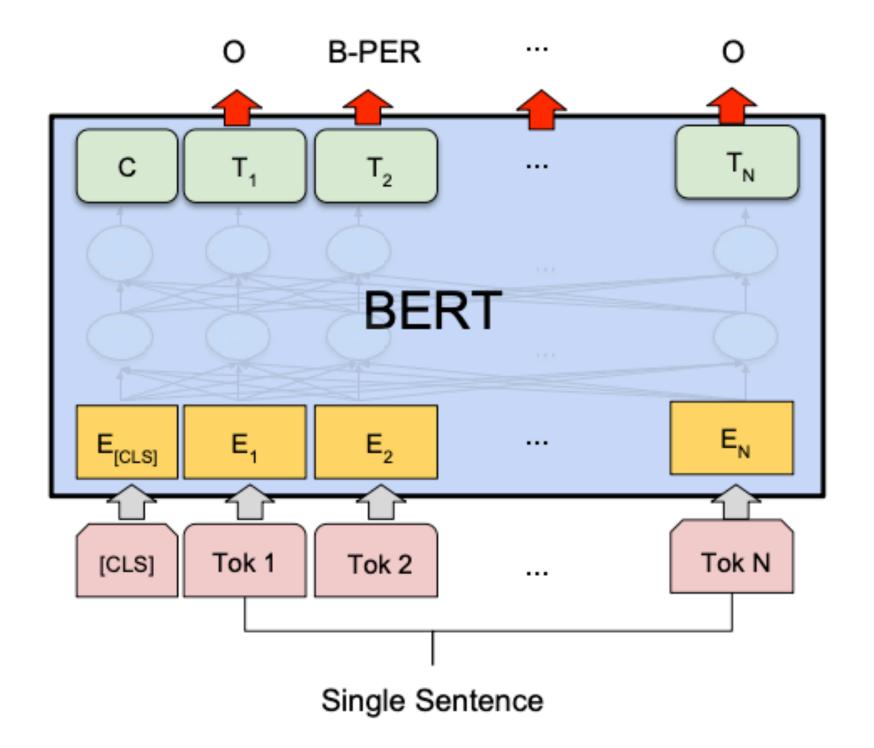
BERT fine-tuning

"Pretrain once, finetune many times."

token-level tasks

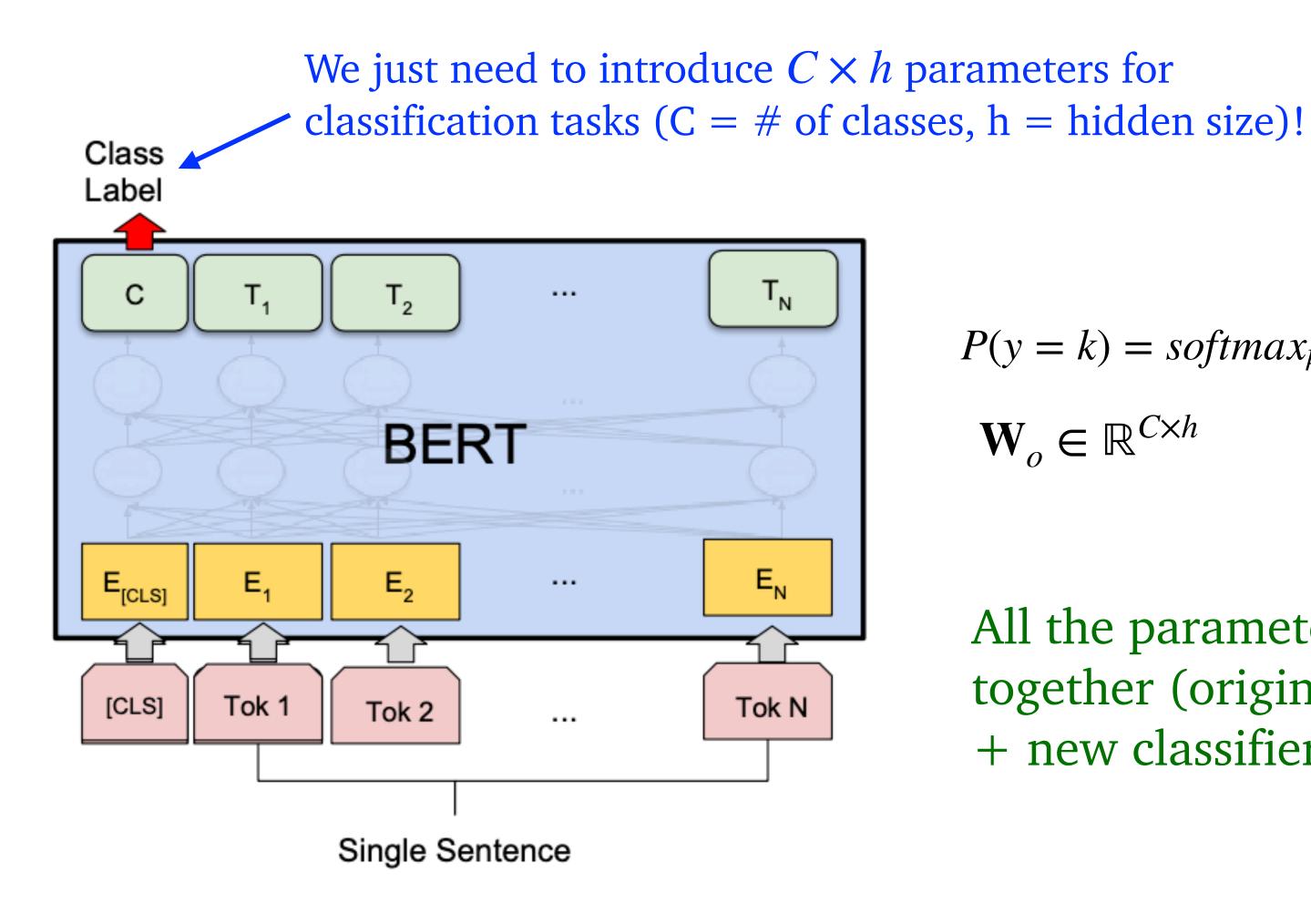


(c) Question Answering Tasks: SQuAD v1.1



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Example: sentiment classification



$$P(y = k) = softmax_k(\mathbf{W}_o\mathbf{h}_{[CLS]})$$

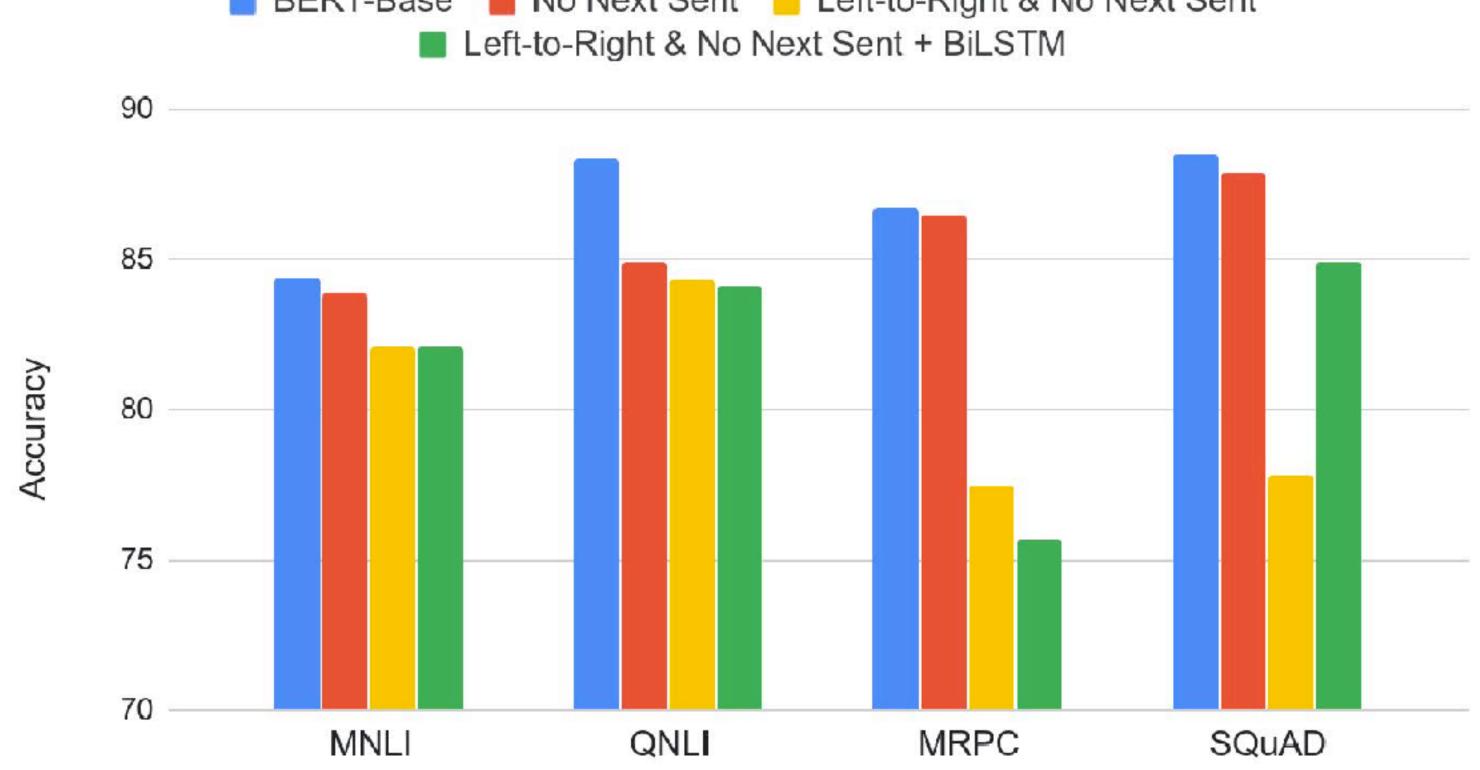
$$\mathbf{W}_o \in \mathbb{R}^{C \times h}$$

All the parameters will be learned together (original BERT parameters + new classifier parameters)

Experimental results: GLUE

System	n MNLI-(m/mm)		QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Ablation study: pre-training tasks



- MLM >> left-to-right LMs
- NSP improves on some tasks
- Note: later work (Joshi et al., 2020; Liu et al., 2019) argued that NSP is not useful

Ablation study: model sizes

_	hidden	# of
# layers	size	heads
↓	↓	
	•	

Ну	perpar	ams		Dev Set Accuracy						
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2				
3	768	12	5.84	77.9	79.8	88.4				
6	768	3	5.24	80.6	82.2	90.7				
6	768	12	4.68	81.9	84.8	91.3				
12	768	12	3.99	84.4	86.7	92.9				
12	1024	16	3.54	85.7	86.9	93.3				
24	1024	16	3.23	86.6	87.8	93.7				

The bigger, the better!

Encoder: other variations of BERT

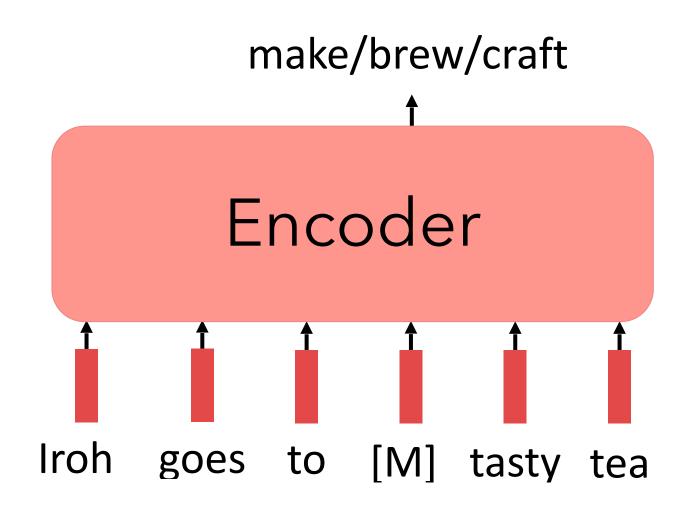
- ALBERT [Lan et al., 2020]: incorporates two parameter reduction techniques that lift the major obstacles in scaling pre-trained models
- DeBERTa [He et al., 2021]: decoding-enhanced BERT with disentangled attention
- **SpanBERT** [Joshi et al., 2019]: masking contiguous spans of words makes a harder, more useful pre-training task
- **ELECTRA** [Clark et al., 2020]: corrupts texts by replacing some tokens with plausible alternatives sampled from a small generator network, then train a discriminative model that predicts whether each token in the corrupted input was replaced by a generator sample or not.
- DistilBERT [Sanh et al., 2019]: distilled version of BERT that's 40% smaller
- TinyBERT [Jiao et al., 2019]: distill BERT for both pre-training & fine-tuning

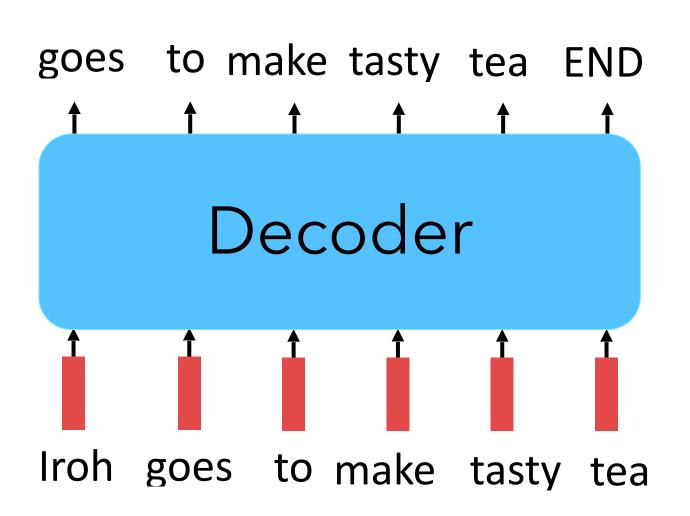
• ...

Encoder: pros & cons

- Consider both left and right context
- Capture intricate contextual relationships

 Not good at generating open-text from left-toright, one token at a time



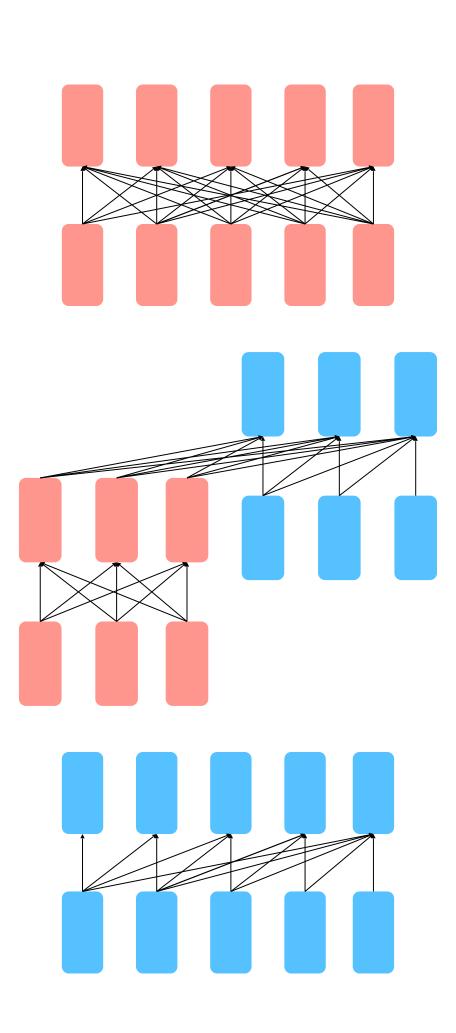


Pre-training architectures

Encoder

Encoder-Decoder

Decoder



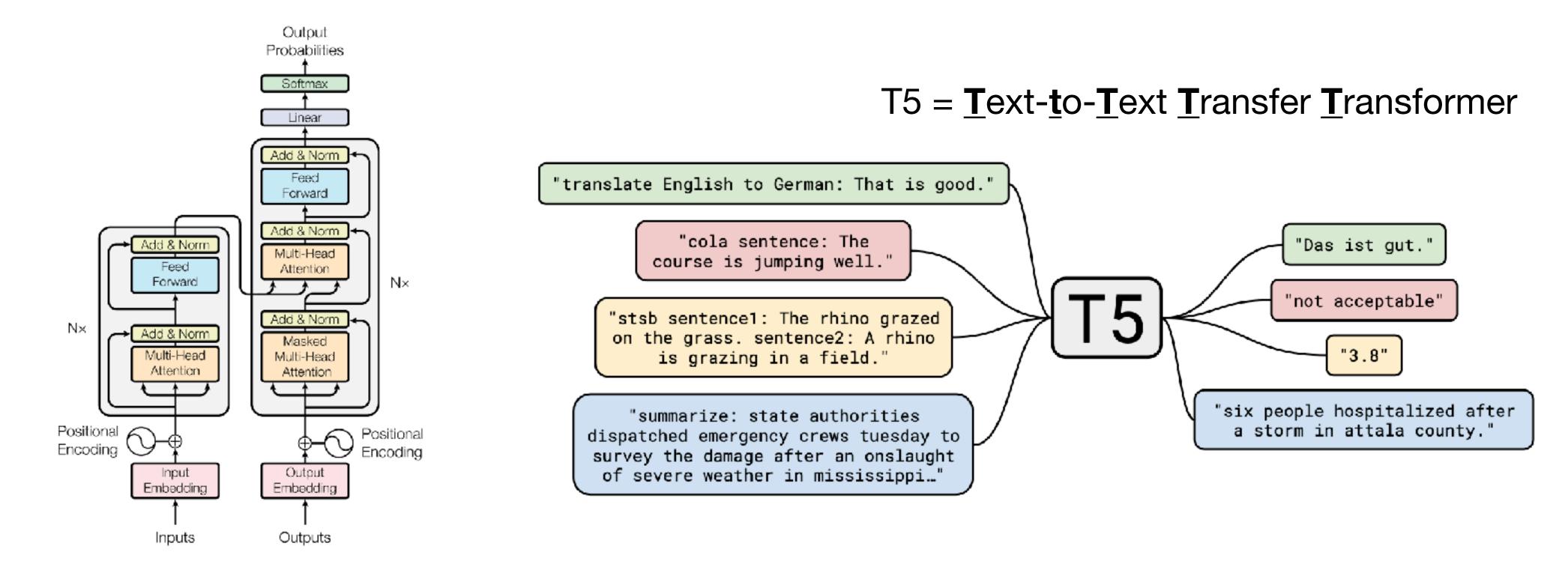
 Bidirectional; can condition on the future context

 Map two sequences of different length together

 Language modeling; can only condition on the past context

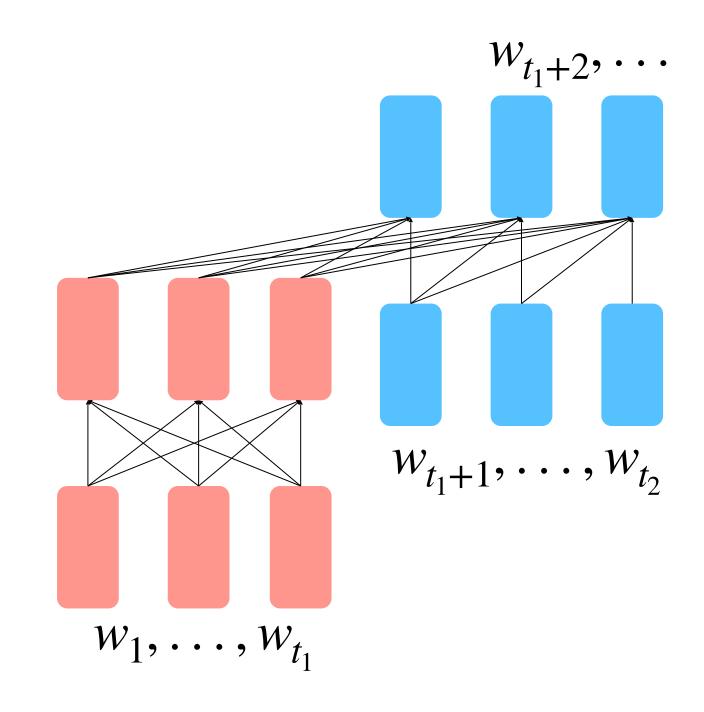
Text-to-text models: the best of both worlds

- So bar, encoder-only models (e.g., BERT) enjoy the benefits of bidirectionality but they
 can't be used to generate text
- Decoder-only models (e.g., GPT) can do generation but they are left-to-right LMs...
- Text-to-text models combine the best of both worlds!



Encoder-decoder: architecture

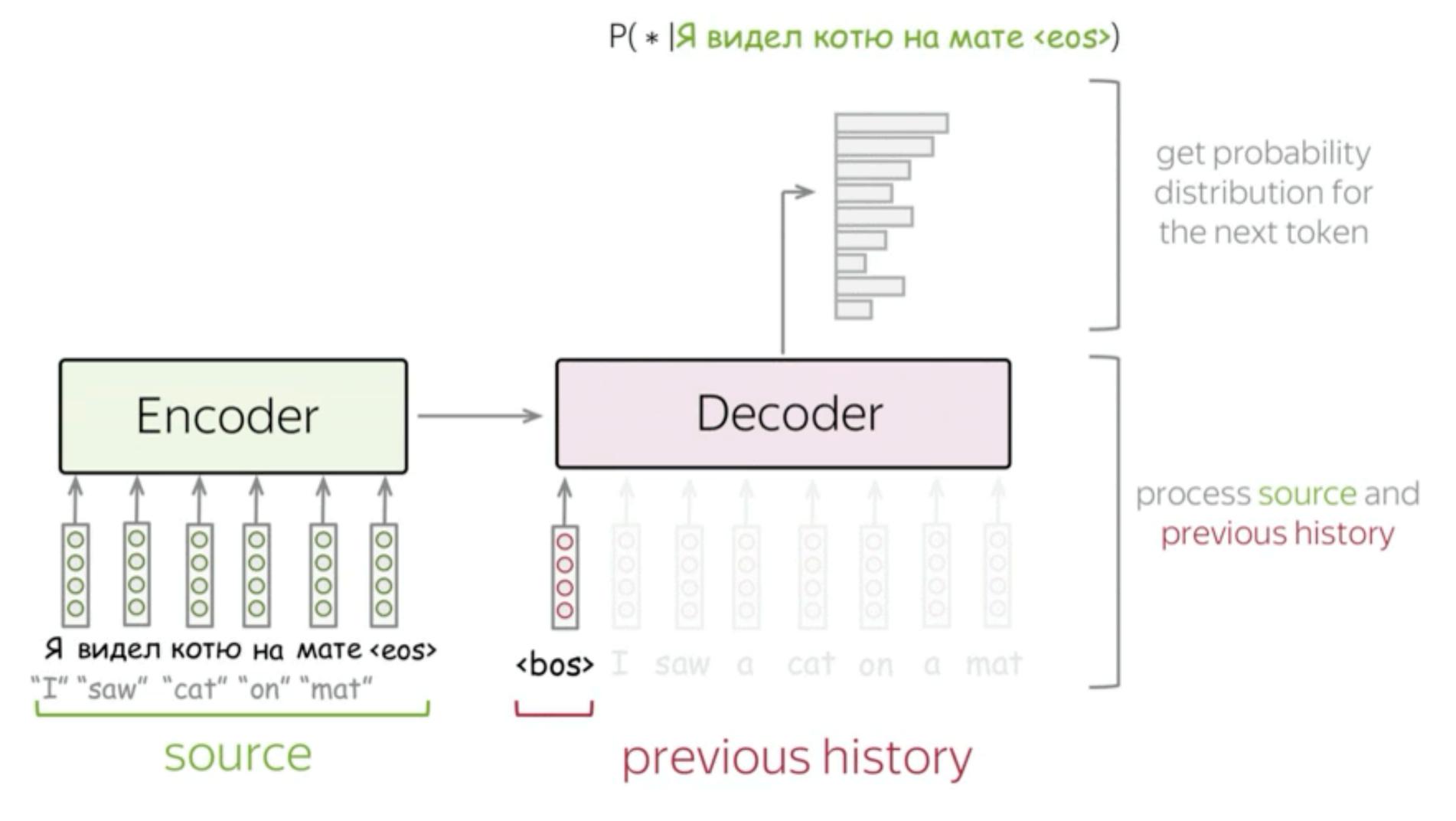
- Moving towards open-text generation...
- **Encoder** builds a representation of the source and gives it to the **decoder**
- **Decoder** uses the source representation to generate the target sentence
- The encoder portion benefits from bidirectional context; the decoder portion is used to train the whole model through language modeling



$$\begin{aligned} h_1, \dots, h_{t_1} &= \mathsf{Encoder}(w_1, \dots, w_{t_1}) \\ h_{t_1+1}, \dots, h_{t_2} &= \mathsf{Decoder}(w_{t_1+1}, \dots, w_{t_2}, h_1, \dots, h_{t_1}) \\ y_i &\sim Ah_i + b, i > t \end{aligned}$$

[Raffel et al., 2018]

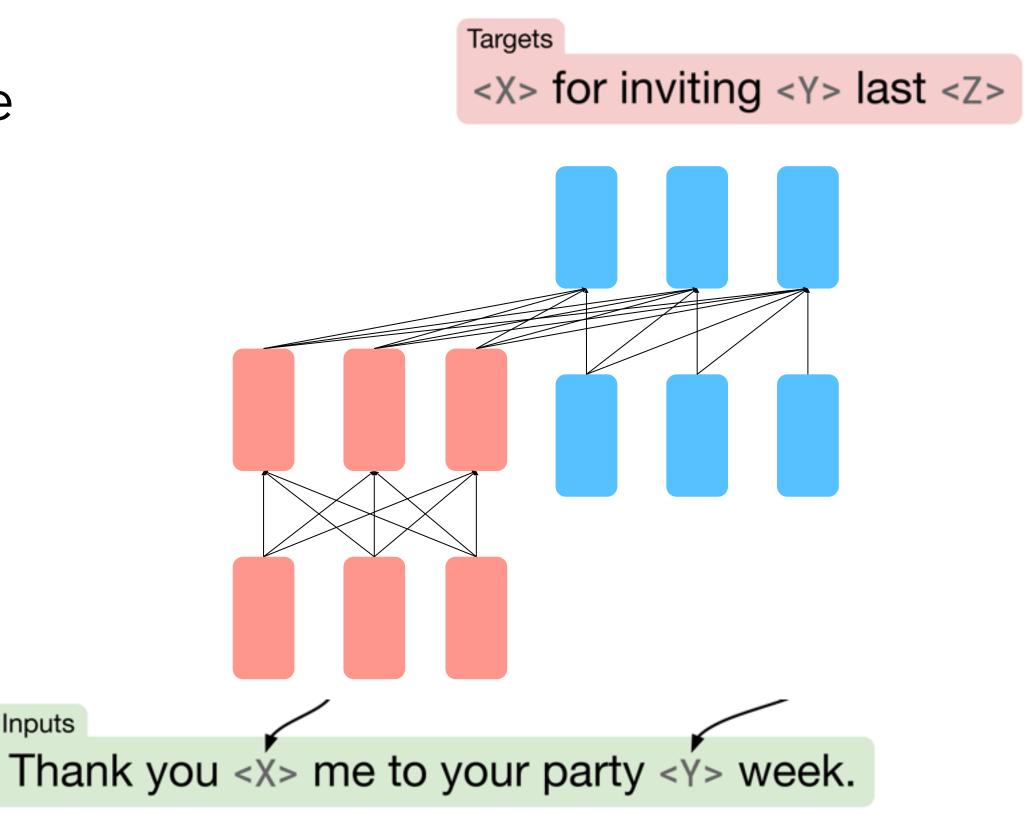
Encoder-decoder: machine translation example



Encoder-decoder: training objective

- T5 [Raffel et al., 2018]
- Text span corruption (denoising): Replace different-length spans from the input with unique placeholders (e.g., <extra_id_0>); decode out the masked spans.
 - Done during text preprocessing: training uses language modeling objective at the decoder side

Thank you for inviting me to your party last week.



Encoder-decoder:T5

[Raffel et al., 2018]

- Encoder-decoders works better than decoders
- Span corruption (denoising) objective works better than language modeling

Architecture	Objective	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Encoder-decoder	Denoising	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	Denoising	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	Denoising	P	\dot{M}	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	Denoising	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39
Encoder-decoder	LM	2P	M	79.56	18.59	76.02	64.29	26.27	39.17	26.86
Enc-dec, shared	LM	P	M	79.60	18.13	76.35	63.50	26.62	39.17	27.05
Enc-dec, 6 layers	LM	P	M/2	78.67	18.26	75.32	64.06	26.13	38.42	26.89
Language model	LM	P	\dot{M}	73.78	17.54	53.81	56.51	25.23	34.31	25.38
Prefix LM	LM	P	M	79.68	17.84	76.87	64.86	26.28	37.51	26.76

Encoder-decoder: T5

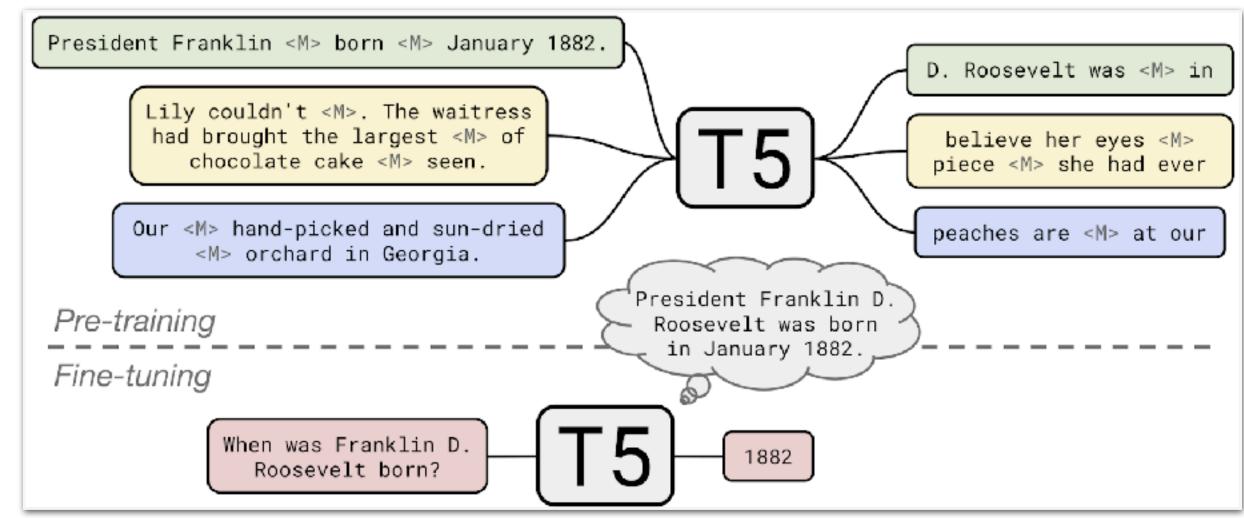
[Raffel et al., 2018]

 Text-to-Text: convert NLP tasks into input/ output text sequences

Dataset: Colossal Clean Crawled Corpus (C4),
 750G text data!

Various Sized Models:

- Base (222M)
- Small (60M)
- Large (770M)
- 3B
- 11B
- Achieved SOTA with scaling & purity of data



Encoder-decoder: pros & cons

- A nice middle ground between leveraging bidirectional contexts and open-text generation
- Good for **multi-task** fine-tuning

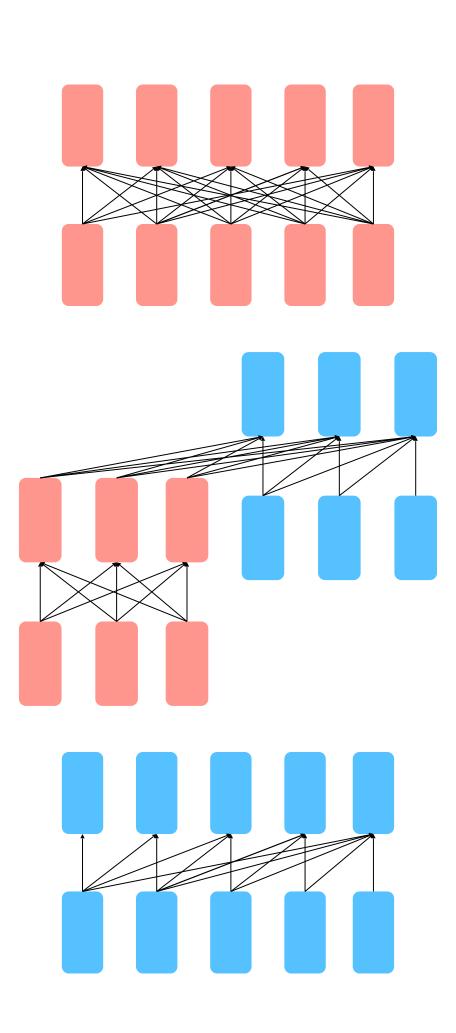
- Require more text wrangling
- Harder to train
- Less flexible for natural language generation

Pre-training architectures

Encoder

Encoder-Decoder

Decoder



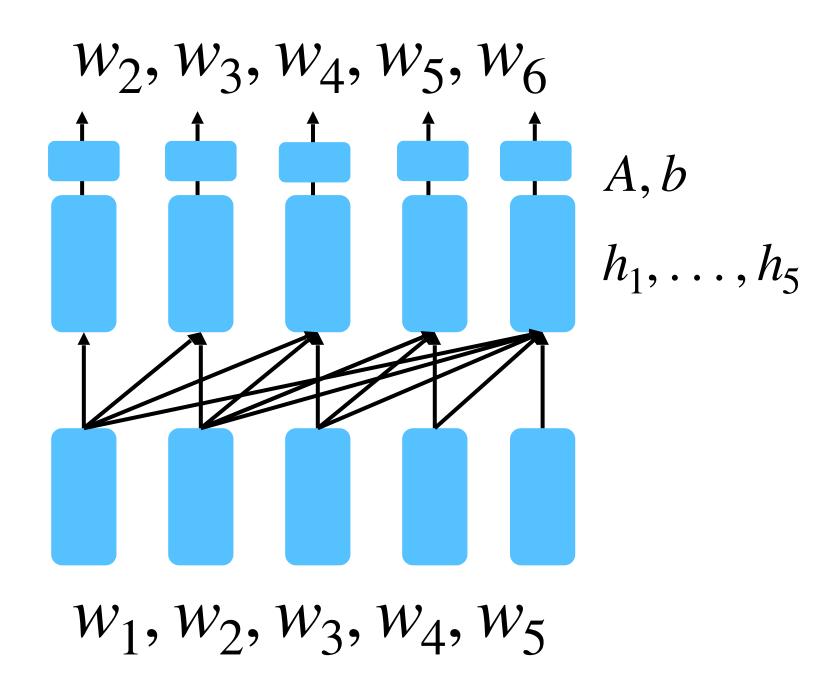
 Bidirectional; can condition on the future context

 Map two sequences of different length together

 Language modeling; can only condition on the past context

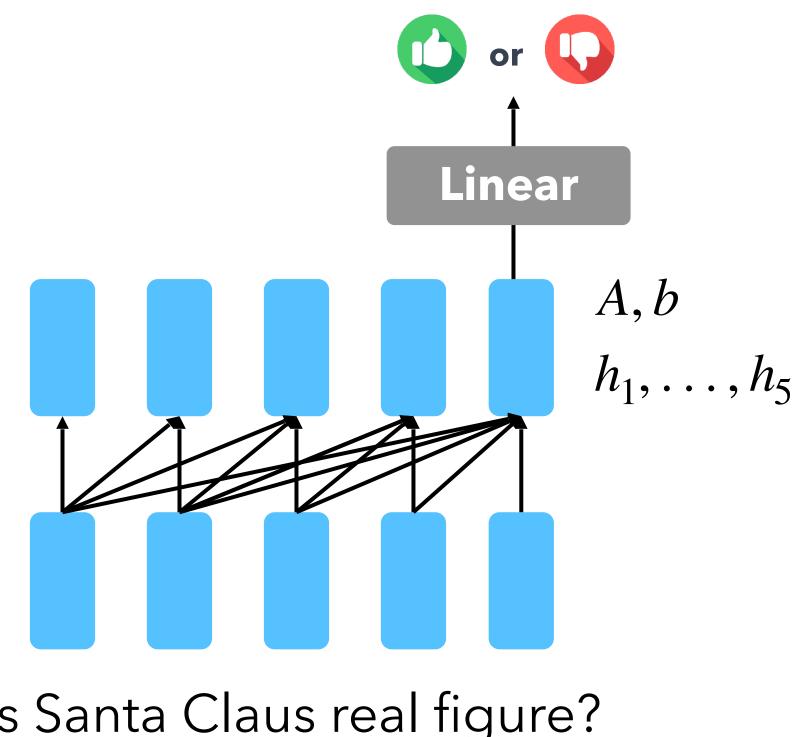
Decoder: training objective

- Many most famous generative LLMs are decoderonly
 - e.g., GPT1/2/3/4, Llama1/2
- Language modeling! Natural to be used for open-text generation
- Conditional LM: $p(w_t | w_1, \dots, w_{t-1}, x)$
 - Conditioned on a source context x to generate from left-to-right
- Can be fine-tuned for natural language generation (NLG) tasks, e.g., dialogue, summarization.



Decoder: training objective

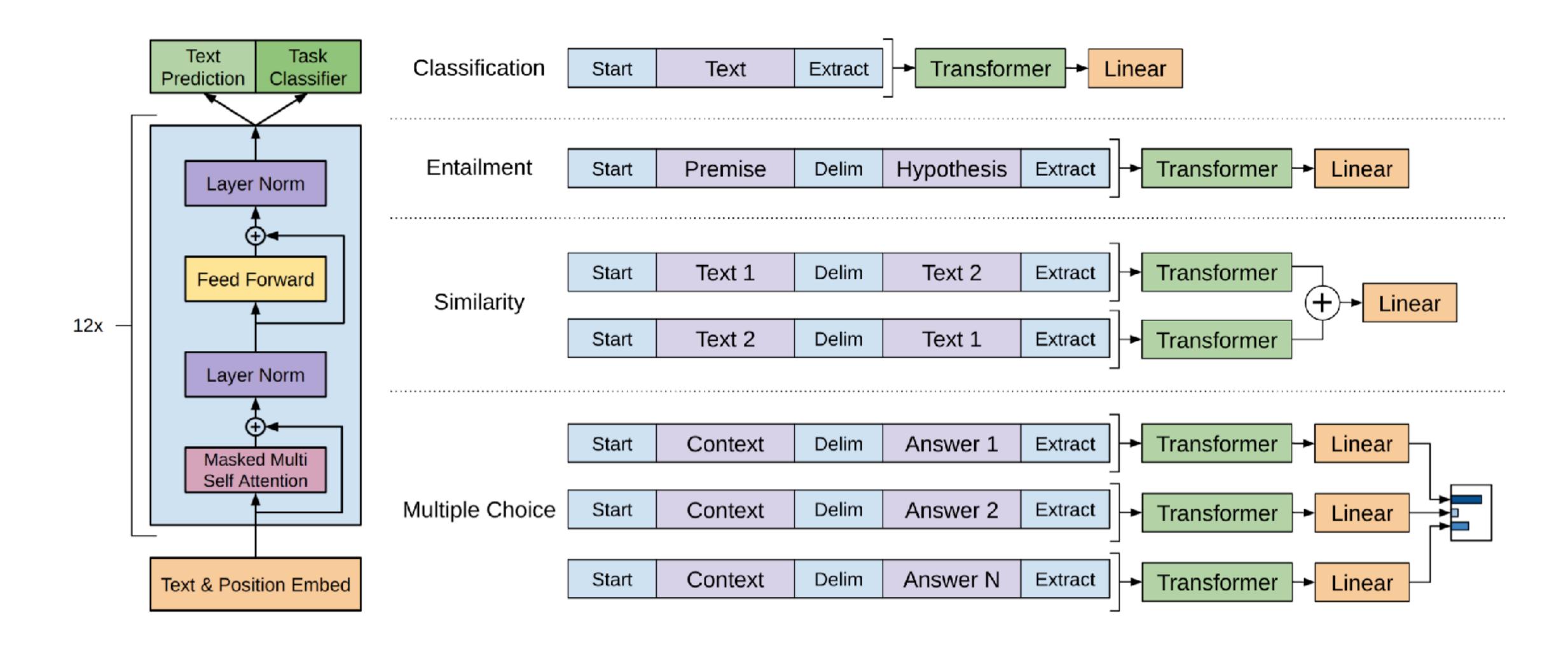
- Customizing the pre-trained model for downstream tasks:
 - Add a linear layer on top of the last hidden layer to make it a classifier!
 - During fine-tuning, trained the randomly initialized linear layer, along with all parameters in the neural net.



Is Santa Claus real figure?

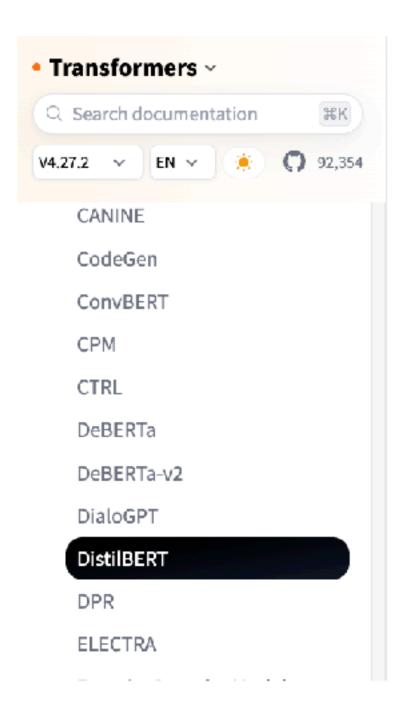
Decoder: GPT

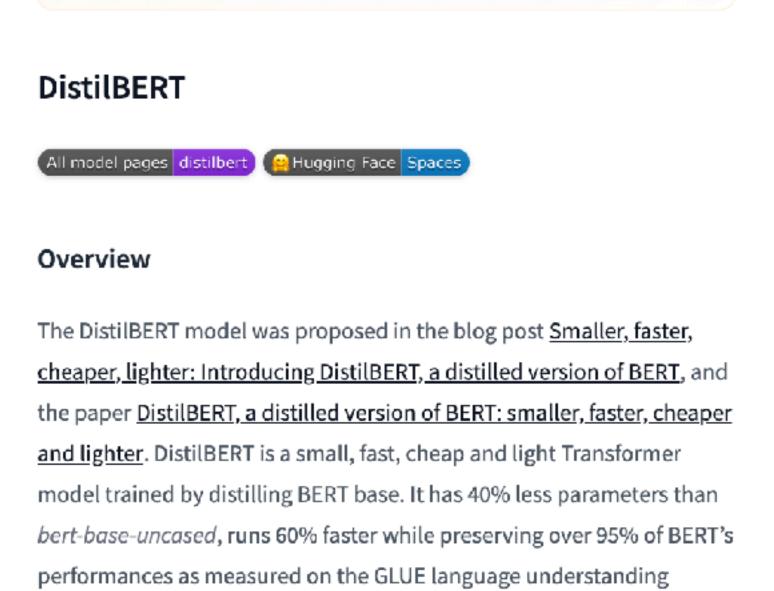
Generative Pre-trained Transformer [Radford et al., 2018]



How to use these pre-trained models?

benchmark.





```
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

>>> def tokenize_function(examples):
...    return tokenizer(examples["text"], padding="max_length", truncation=True)

>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)

>>> from transformers import AutoModelForSequenceClassification

>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
```

How to pick a proper architecture for a given task?

- Right now decoder-only models seem to dominant the field at the moment
 - e.g., GPT1/2/3/4, Mistral, Llama1/2
- T5 (seq2seq) works well with multi-tasking
- Picking the best model architecture remains an open research question!