

COMP 3361 Natural Language Processing

Lecture 12: Attention and Transformers (cont.)

Spring 2025

Latest Al news

OpenAl Agents SDK

Anthropic Model Context Protocol

Google Gemini Robotics

Multi-Head Attention: Walk-through

Multi-Head Attention: Walk-through

Recall the Matrices Form of Self-Attention

$$Q = I \ W_Q$$

$$K = I \ W_K$$

$$V = I \ W_V$$

$$I = \{a_1, \dots, a_n\} \in \mathbb{R}^{n \times d}, \text{ where } a_i \in \mathbb{R}^d$$

$$W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$$

$$Q, K, V \in \mathbb{R}^{n \times d}$$

$$O = A'V$$

$$\qquad \qquad \qquad O \in \mathbb{R}^{n \times d}$$

Multi-head Attention in Matrices

- ullet Multiple attention "heads" can be defined via multiple $W_Q,\,W_K,\,W_V$ matrices
- Let $W_Q^l, W_K^l, W_V^l \in \mathbb{R}^{d \times \frac{d}{h}}$, where h is the number of attention heads, and l ranges from 1 to h.
- Each attention head performs attention independently:
 - $O^l = \operatorname{softmax}(I \ W_O^l \ W_K^{l^T} \ I^T) \ I \ W_V^l$
- ullet Concatenating different O^l from different attention heads.
 - $O = [O^1; ...; O^n] Y$, where $Y \in \mathbb{R}^{d \times d}$

The Matrices Form of Multi-head Attention

$$Q^{l} = I \ W_{Q}^{l}$$

$$K^{l} = I \ W_{K}^{l}$$

$$V^{l} = I \ W_{V}^{l}$$

$$A^{l} = Q^{l} \ K^{l^{T}}$$

$$A^{l'} = \operatorname{softmax}(A^{l})$$

$$O^{l} = A^{l'} \ V^{l}$$

$$Q^{l}, \dots; O^{h}] \ Y$$

$$I = \{a_{1}, \dots, a_{n}\} \in \mathbb{R}^{n \times d}, \text{ where } a_{i} \in \mathbb{R}^{d}$$

$$W_{Q}^{l}, W_{K}^{l}, W_{V}^{l} \in \mathbb{R}^{d \times \frac{d}{h}}$$

$$Q^{l}, K^{l}, V^{l} \in \mathbb{R}^{d}$$

$$A^{l'}, A^{l} \in \mathbb{R}^{d}$$

$$P \in \mathbb{R}^{d \times d}$$

$$[O^{1}; \dots; O^{h}] \in \mathbb{R}^{d}$$

$$O \in \mathbb{R}^{d}$$

The Matrices Form of Multi-head Attention

$$Q^{l} = I \ W_{Q}^{l}$$

$$K^{l} = I \ W_{K}^{l}$$

$$V^{l} = I \ W_{V}^{l}$$

$$A^{l} = Q^{l} \ K^{l^{T}}$$

$$A^{l'} = \operatorname{softmax}(A^{l})$$

$$O^{l} = A^{l'} \ V^{l}$$

$$Q^{l}, \dots; O^{h}] \ Y$$

$$I = \{a_{1}, \dots, a_{n}\} \in \mathbb{R}^{n \times d}, \text{ where } a_{i} \in \mathbb{R}^{d}$$

$$W_{Q}^{l}, W_{K}^{l}, W_{V}^{l} \in \mathbb{R}^{d \times \frac{d}{h}}$$

$$Q^{l}, K^{l}, V^{l} \in \mathbb{R}^{n \times \frac{d}{h}}$$

$$A^{l'} = \operatorname{softmax}(A^{l})$$

$$O^{l} \in \mathbb{R}^{n \times \frac{d}{h}}$$

$$V \in \mathbb{R}^{d \times d}$$

$$[O^{1}; \dots; O^{h}] \in \mathbb{R}^{n \times d}$$

$$O \in \mathbb{R}^{n \times d}$$

Multi-head Attention is Computationally Efficient

- ullet Even though we compute h many attention heads, it's not more costly.
 - We compute $I W_O \in \mathbb{R}^{n \times d}$, and then reshape to $\mathbb{R}^{n \times h \times \frac{d}{h}}$.
 - Likewise for IW_K and IW_V .
 - Then we transpose to $\mathbb{R}^{h \times n \times \frac{d}{h}}$; now the head axis is like a batch axis.
 - Almost everything else is identical. All we need to do is to reshape the tensors!

Scaled Dot Product

- "Scaled Dot Product" attention aids in training.
- ullet When dimensionality d becomes large, dot products between vectors tend to become large.
 - Because of this, inputs to the softmax function can be large, making the gradients small.
- Instead of the self-attention function we've seen:
 - $O^l = \operatorname{softmax}(I \ W_Q^l \ W_K^{l^T} \ I^T) \ I \ W_V^l$
- We divide the attention scores by $\sqrt{d/h}$, to stop the scores from becoming large just as a function of d/h (the dimensionality divided by the number of heads).

$$O^l = \operatorname{softmax}(\frac{I \ W_Q^l \ W_K^{l}^T \ I^T}{\sqrt{d/h}}) \ I \ W_V^l$$

The Transformer Decoder

- Now that we've replaced self-attention with multi-head self-attention, we'll go through two optimization tricks:
 - Residual connection ("Add")
 - Layer normalization ("Norm")

Residual Connections

- Residual connections are a trick to help models train better.
 - Instead of $X^{(i)} = \text{Layer}(X^{(i-1)})$ (where i represents the layer)

$$X^{(i-1)}$$
 — Layer $X^{(i)}$

• We let $X^{(i)} = X^{(i-1)} + \text{Layer}(X^{(i-1)})$ (so we only have to learn "the residual" from the previous layer)

- Gradient is great through the residual connection; it's 1!
- Bias towards the identity function!

[Loss landscape visualization, Li et al., 2018, on a ResNet]

Layer Normalization

- Layer normalization is a trick to help models train faster.
- Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean and standard deviation within each layer.
 - LayerNorm's success may be due to its normalizing gradients [Xu et al., 2019]
- Let $x \in \mathbb{R}^d$ be an individual (word) vector in the model.
- Let $\mu = \sum_{j}^{n} x_{j}$; this is the mean; $\mu \in \mathbb{R}$.
- Let $\sigma = \sqrt{\frac{1}{d} \sum_{j=1}^{d} \left(x_j \mu \right)^2}$; this is the standard deviation; $\sigma \in \mathbb{R}$.
- Let $\gamma \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ be learned "gain" and "bias" parameters. (Can omit!)
- Then layer normalization computes:

Normalize by scalar mean and variance output =
$$\frac{x - \mu}{\sqrt{\sigma + \epsilon}} * \gamma + \beta$$
 Modulate by learned element-wise gain an bias

element-wise gain and bias

The Transformer Decoder

- The Transformer Decoder is a stack of Transformer Decoder **Blocks**.
- Each Block consists of:
 - Masked Multi-head Self-attention
 - Add & Norm
 - Feed-Forward
 - Add & Norm

The Transformer Encoder

- The Transformer Decoder constrains to unidirectional context, as for language models.
- What if we want bidirectional context, like in a bidirectional RNN?
- We use Transformer Encoder –
 the ONLY difference is that we
 remove the masking in selfattention.

The Transformer Encoder-Decoder

- More on Encoder-Decoder models will be introduced in the next lecture!
- Right now we only need to know that it processes the source sentence with a bidirectional model
 (Encoder) and generates the target with a unidirectional model (Decoder).
- The Transformer Decoder is modified to perform cross-attention to the output of the Encoder.

Cross-Attention

Linear

Softmax

Cross-Attention Details

- Self-attention: queries, keys, and values come from the same source.
- **Cross-Attention:** *keys* and *values* are from **Encoder** (like a memory); *queries* are from **Decoder**.
- Let $h_1, ..., h_n$ be output vectors from the Transformer encoder, $h_i \in \mathbb{R}^d$.
- Let $z_1, ..., z_n$ be input vectors from the Transformer decoder, $z_i \in \mathbb{R}^d$.
- Keys and values from the encoder:
 - $\bullet \ k_i = W_K h_i$
 - $\bullet \quad v_i = W_V h_i$
- Queries are drawn from the decoder:
 - $\bullet \ q_i = W_{Q_i} z_i$

Transformers: pros and cons

- Easier to capture long-range dependencies: we draw attention between every pair of words!
- Easier to parallelize:

$$Q = XW^Q$$
 $K = XW^K$ $V = XW^V$
$$\text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Are positional encodings enough to capture positional information?

Otherwise self-attention is an unordered function of its input

Quadratic computation in self-attention

Can become very slow when the sequence length is large

Quadratic computation as a function of sequence length

$$Q = XW^Q \qquad K = XW^K \qquad V = XW^V$$

$$n \times d_q \qquad d_k \times n$$

$$Attention(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V \qquad n \times d_v$$

Need to compute n^2 pairs of scores (= dot product) $O(n^2d)$

RNNs only require $O(nd^2)$ running time:

$$\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b})$$

(assuming input dimension = hidden dimension = d)

Quadratic computation as a function of sequence length

Need to compute n^2 pairs of scores (= dot product) $O(n^2d)$

What if we want to scale $n \ge 50{,}000$? For example, to work on long documents?

The Revolutionary Impact of Transformers

- Almost all current-day leading language models use Transformer building blocks.
 - E.g., GPT1/2/3/4, T5, Llama 1/2, BERT, ... almost anything we can name
 - Transformer-based models dominate nearly all NLP leaderboards.
- Since Transformer has been popularized in language applications, computer vision also adapted Transformers, e.g., Vision
 Transformers.

