
Lecture 11: Attention and Transformers

COMP 3361 Natural Language Processing

Spring 2025

Many materials from CSE447@UW (Liwei Jiang), COS 484@Princeton, and CS224n@Stanford with special thanks!

Lecture 3: Tokenization2

Announcements

• Assignment 2 is out, due on April 1.
• Written questions resemble the types of questions that could

appear on your final exam.

Transformers

(Vaswani et al., 2017)

Transformer encoder-decoder

• Transformer encoder + Transformer decoder

• First designed and experimented on NMT

Transformer encoder-decoder

• Transformer encoder = a stack of encoder layers

• Transformer decoder = a stack of decoder layers

Transformer encoder: BERT, RoBERTa, ELECTRA

Transformer decoder: GPT-3, ChatGPT, Palm

Transformer encoder-decoder: T5, BART

• Key innovation: multi-head, self-attention

• Transformers don’t have any recurrence structures!

ht = f(ht−1, xt) ∈ ℝh

Transformers: roadmap

• From attention to self-attention

• From self-attention to multi-head self-attention

• Feedforward layers

• Positional encoding

• Residual connections + layer normalization

• Transformer encoder vs Transformer decoder

Issues with RNNs: Linear Interaction Distance

Lecture 5: Attention & Transformers7

• RNNs are unrolled left-to-right.
• Linear locality is a useful heuristic: nearby

words often affect each other’s meaning! Steve Jobs

• However, there’s the vanishing gradient
problem for long sequences.
• The gradients that are used to update the

network become extremely small or "vanish"
as they are backpropogated from the output
layers to the earlier layers.

• Failing to capture long-term dependences.
Steve Jobs Applewho …

O(sequence length)

Issues with RNNs: Lack of Parallelizability

Lecture 5: Attention & Transformers8

• Forward and backward passes have O(sequence length) unparallelizable operations
• GPUs can perform many independent computations (like addition) at once!
• But future RNN hidden states can’t be computed in full before past RNN hidden

states have been computed.
• Training and inference are slow; inhibits on very large datasets!

Numbers indicate min # of steps before a state can be computed

1

0

h1

N

hT

2 3

1 2

h2 h3

The New De Facto Method: Attention

Lecture 5: Attention & Transformers9

Instead of deciding the
next token solely based on
the previously seen tokens,
each token will “look at”
all input tokens at the
same to decide which
ones are most important
to decide the next token.

In practice, the actions of all tokens
are done in parallel!

Building the Intuition of Attention

Lecture 5: Attention & Transformers10

• Attention treats each token’s representation as a query to access and incorporate
information from a set of values.
• Today we look at attention within a single sequence.

• Number of unparallelizable operations does NOT increase with sequence length.
• Maximum interaction distance: O(1), since all tokens interact at every layer!

All tokens attend to all tokens
in previous layer; most
arrows here are omitted

0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

h3

attention

attention

embedding

Attention as a soft, averaging lookup table

Lecture 5: Attention & Transformers11

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys
that map to values. The query matches
one of the keys, returning its value.

In attention, the query matches all keys softly, to
a weight between 0 and 1. The keys’ values are
multiplied by the weights and summed.

Self-Attention: Basic Concepts

Lecture 5: Attention & Transformers12

[Lena Viota Blog]

Query: asking for
information

Key: saying that it
has some information

Value: giving the
information

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Self-Attention: Walk-through

Lecture 5: Attention & Transformers13

a1 a2 a3 a4

b1 b2 b3 b4

Can be either input or a hidden layer

Self-Attention Layer

Each is obtained by considering bi ∀ai

Self-Attention: Walk-through

Lecture 5: Attention & Transformers14

a1 a2 a3 a4

b1

How relevant are to ?a2, a3, a4 a1 We denote the level
of relevance as α

How to compute ?α

Lecture 5: Attention & Transformers15

a1

WQ

a4

WK

q k.

α = q ⋅ k

Method 1 (most common): Dot product Method 2: Additive

a1

WQ

a4

WK

q k

α

tanh

W

We’ll use this!

+

Self-Attention: Walk-through

Lecture 5: Attention & Transformers16

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4attention scores

q1 = WQ a1

q1query

k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3

a1 a2 a3 a4

α1,1 = q1 ⋅ k1

Lecture 5: Attention & Transformers17

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

Self-Attention: Walk-through

α1,1 = q1 ⋅ k1

Lecture 5: Attention & Transformers18

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

Softmax

α′

1,2 α′

1,3 α′

1,4α′

1,1

α′

1,i =
eα1,i

∑j eα1,j

α1,1 = q1 ⋅ k1

Lecture 5: Attention & Transformers19

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

Softmax

α′

1,2 α′

1,3 α′

1,4α′

1,1

Denote how relevant each token are to !
Use attention scores to extract information

a1

Lecture 5: Attention & Transformers20

q1 k2 k4k3k1

α′

1,2 α′

1,3 α′

1,4α′

1,1 ×× ××

b1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information

b1 = ∑
i

α′

1,i vi

Lecture 5: Attention & Transformers21

q1 k2 k4k3k1

α′

1,2 α′

1,3 α′

1,4α′

1,1 ×× ××

b1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information

b1 = ∑
i

α′

1,i vi

The higher the attention score is, the
more important is to composing

α′

1,i
ai b1

α′

2,2 α′

2,3×× ×××α′

2,1 α′

2,4

Lecture 5: Attention & Transformers22

q1 k2 k4k3k1 v1 v2 v3 v4

Repeat the same calculation for all to obtain ai bi

b2 = ∑
i

α′

2,i vi

q3 q4q2

b2

a1 a2 a3 a4

α′

2,2 α′

2,3×× ×××α′

2,1 α′

2,4

Lecture 5: Attention & Transformers23

q1 k2 k4k3k1 v1 v2 v3 v4

Repeat the same calculation for all to obtain ai bi

b2 = ∑
i

α′

2,i vi

q3 q4q2

b2

Note that the computation of can be
parallelized, as they are independent to

each other

bi

a1 a2 a3 a4

= WK

k1 a1

k2 a2

k3 a3

k4 a4

K I

Lecture 5: Attention & Transformers24

= WQ

q1 a1

q2 a2

q3 a3

q4 a4

Q I

= WV

v1 a1

v2 a2

v3 a3

v4 a4

V I

Parallelize the computation!
QKV

Lecture 5: Attention & Transformers25

q1 k2 k4k3k1

α′

1,2 α′

1,3 α′

1,4α′

1,1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Parallelize the computation!
Attention Scores α1,1

k1

α1,2

k2

α1,3

k3

α1,4

k4=

q1

Lecture 5: Attention & Transformers26

α1,1

k1

α1,2

k2

α1,3

k3

α1,4

k4=

q1

Parallelize the computation!
Attention Scores

Lecture 5: Attention & Transformers27

=

α1,1 α1,2 α1,3 α1,4α′

1,1

α′

2,1

α′

3,1

α′

4,1

α′

1,2

α′

2,2

α′

3,2

α′

4,2

α′

1,3

α′

2,3

α′

3,3

α′

4,3

α′

1,4

α′

2,4

α′

3,4

α′

4,4

k1 k2 k3 k4

q1

α2,1 α2,2 α2,3 α2,4 q2

α3,1 α3,2 α3,3 α3,4 q3
α4,1 α4,2 α4,3 α4,4 q4

A′ A
Q

KT

Parallelize the computation!
Attention Scores

Lecture 5: Attention & Transformers28

=

b1
α′

1,1

v1
α′

1,2

v2

α′

1,3

v3

α′

1,4

v4

α′

1,1 v1 α′

1,2 v2+ α′

1,3 v3+ α′

1,4 v4+

Parallelize the computation!
Weighted Sum of Values with Attention Scores

Lecture 5: Attention & Transformers29

Parallelize the computation!

α′

1,1 α′

1,2 α′

1,3 α′

1,4

=

b1

α′

2,1 α′

2,2 α′

2,3 α′

2,4
b2

α′

3,1 α′

3,2 α′

3,3 α′

3,4b3

v1

v2

v3

v4
α′

4,1 α′

4,2 α′

4,3 α′

4,4b4

A′

VO

Parallelize the computation!
Weighted Sum of Values with Attention Scores

Lecture 5: Attention & Transformers30

= WQQ I = WKK I = WVV I

Q KTA′ A =Softmax

A′ = VO

Q = I WQ

K = I WK

V = I WV

O = A′ V

A = I WQ (I WK)T = I WQ WT
K IT

A′ = softmax(A)

A = Q KT

Lecture 5: Attention & Transformers31

Q = I WQ

K = I WK

V = I WV

O = A′ V

The Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′ , A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′ = softmax(A)

A = Q KT

Dimensions?

?

?

?

Lecture 5: Attention & Transformers32

Q = I WQ

K = I WK

V = I WV

O = A′ V

The Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′ , A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′ = softmax(A)

A = Q KT

Dimensions?

Self-Attention: Summary

Lecture 5: Attention & Transformers33

1. Transform each word embedding with weight matrices , each in WQ, WK, WV ℝd×d

qi = WQ ai (queries) ki = WK ai (keys) vi = WV ai (values)

Let be a sequence of words in vocabulary , like Steve Jobs founded Apple.
For each , let , where is an embedding matrix.

w1:n 𝑉
wi ai = Ewi E ∈ ℝd×|V|

2. Compute pairwise similarities between keys and queries; normalize with softmax

α′

i,j =
eαi,j

∑j eαi,jαi,j = kj qi

3. Compute output for each word as weighted sum of values

bi = ∑
j

α′

i,j vj

Limitations and Solutions of Self-Attention

Lecture 5: Attention & Transformers34

No Sequence Order

No Nonlinearities

Looking into the Future

Position Embedding

Adding Feed-forward Networks

Masking

Limitations and Solutions of Self-Attention

Lecture 5: Attention & Transformers35

No Sequence Order Position Embedding

No Nonlinearities Adding Feed-forward Networks

Looking into the Future Masking

No Sequence Order Position Embedding→

Lecture 5: Attention & Transformers36

• How to incorporate the position info into the self-attention blocks?

• Just add the to the input:

• where is the embedding of the word at index .
• In deep self-attention networks, we do this at the first layer.

• We can also concatenate and , but more commonly we add them.

pi ̂ai = ai + pi

ai i

ai pi

• All tokens in an input sequence are simultaneously fed into self-attention
blocks. Thus, there’s no difference between tokens at different positions.
• We lose the position info!

• How do we bring the position info back, just like in RNNs?

• Representing each sequence index as a vector: , for pi ∈ ℝd i ∈ {1,...,n}

qi ki vi

aipi +

Position Representation Vectors via Sinusoids

Lecture 5: Attention & Transformers37

Sinusoidal Position Representations (from the original Transformer paper):
concatenate sinusoidal functions of varying periods.

cos(𝑖/100002∗1/𝑑)
𝒑𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗ 𝑑
2 /𝑑)

cos(𝑖/100002∗ 𝑑
2 /𝑑)

• Periodicity indicates that maybe “absolute position” isn’t as important
• Maybe can extrapolate to longer sequences as periods restart!

• Not learnable; also the extrapolation doesn’t really work!

Index in the sequence

Di
m

en
sio

n
https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Lecture 5: Attention & Transformers38

Learnable Position Representation Vectors

• Flexibility: each position gets to be learned to fit the data

• Cannot extrapolate to indices outside .1,...,n

Learned absolute position representations: contains learnable parameters.

• Learn a matrix , and let each be a column of that matrix
• Most systems use this method.

pi

p ∈ ℝd×n pi

Sometimes people try more flexible representations of position:
• Relative linear position attention [Shaw et al., 2018]
• Dependency syntax-based position [Wang et al., 2019]

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Limitations and Solutions of Self-Attention

Lecture 5: Attention & Transformers39

No Sequence Order Position Embedding

No Nonlinearities Adding Feed-forward Networks

Looking into the Future Masking

No Nonlinearities Add Feed-forward Networks→

Lecture 5: Attention & Transformers40

There are no element-wise nonlinearities in
self-attention; stacking more self-attention
layers just re-averages value vectors.

Easy Fix: add a feed-forward network
to post-process each output vector.

a1 a2 an

b1

Self-Attention

…

FF FF FF…

b2 bn

Self-Attention

c1

FF FF FF…

c2 cn

…

…

Limitations and Solutions of Self-Attention

Lecture 5: Attention & Transformers41

No Sequence Order Position Embedding

No Nonlinearities Adding Feed-forward Networks

Looking into the Future Masking

Lecture 5: Attention & Transformers

Looking into the Future Masking→
• In decoders (language modeling,

producing the next word given
previous context), we need to
ensure we don’t peek at the future.

https://jalammar.github.io/illustrated-gpt2/

Lecture 5: Attention & Transformers43

• To enable parallelization, we mask
out attention to future words by
setting attention scores to .−∞

αi,j = {qi kj, j ≤ i
−∞, j > i

The

chef

who

[START]

For encoding
these words

The chef
who

[START]

We can look at these (not
greyed out) words

−∞

−∞−∞

−∞−∞ −∞

• In decoders (language modeling,
producing the next word given
previous context), we need to
ensure we don’t peek at the future.

Looking into the Future Masking→

Now We Put Things Together

Lecture 5: Attention & Transformers44

• Self-attention
• The basic computation

• Positional Encoding
• Specify the sequence order

• Nonlinearities
• Adding a feed-forward network at the

output of the self-attention block
• Masking

• Parallelize operations (looking at all tokens)
while not leaking info from the future

Inputs

+

Output
Probabilities

Input Embeddings

Position Embedding

Feed-Forward

Masked Self-Attention

Linear

Softmax

BlockRe
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s

The Transformer Decoder

Lecture 5: Attention & Transformers45

• Replace self-attention with multi-head
self-attention.

• A Transformer decoder is what we use
to build systems like language models.

• It’s a lot like our minimal self-attention
architecture, but with a few more
components.
• Residual connection (“Add”)
• Layer normalization (“Norm")

Inputs

Input Embeddings

Position Embedding

Re
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s

Output Probabilities

Masked Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

+

Multi-head Attention

• It is better to use multiple attention functions instead of one!

• Each attention function (“head”) can focus on different positions.

“The Beast with Many Heads”

https://jalammar.github.io/illustrated-transformer/

H0 H1 H7

Lecture 5: Attention & Transformers47

α′

i,i,1 α′

i,j,1

bi,1

× ×

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

ajMulti-head Attention

Multi-Head Attention: Walk-through

Lecture 5: Attention & Transformers48

α′

i,i,2 α′

i,j,2

bi,2

××

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

ajMulti-head Attention

Multi-Head Attention: Walk-through

× ×

Lecture 5: Attention & Transformers49

××

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

aj

bi,2

bi,1
Y=bi

Multi-head Attention

Some
transformation

Concatenation

Lecture 5: Attention & Transformers50

Q = I WQ

K = I WK

V = I WV

O = A′ V

Recall the Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′ , A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′ = softmax(A)

A = Q KT

Multi-head Attention in Matrices

Lecture 5: Attention & Transformers51

• Multiple attention “heads” can be defined via multiple matrices

• Let , where is the number of attention heads, and ranges
from 1 to .

• Each attention head performs attention independently:

•

• Concatenating different from different attention heads.

• , where

WQ, WK, WV

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h h l
h

Ol = softmax(I Wl
Q Wl

K
T IT) I Wl

V

Ol

O = [O1; . . . ; On] Y Y ∈ ℝd×d

Lecture 5: Attention & Transformers52

Ql = I Wl
Q

Kl = I Wl
K

Vl = I Wl
V

Ol = Al′ Vl

The Matrices Form of Multi-head Attention

Ql, Kl, Vl ∈ ℝn× d
h

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h

Ol ∈ ℝn× d
h

Al′ , Al ∈ ℝn×n

Al′ = softmax(Al)

Al = Ql KlT

Dimensions?

?

?

?

O = [O1; . . . ; Oh] Y

Y ∈ ℝd×d

O ∈ ℝn×d

[O1; . . . ; Oh] ∈ ℝn×d?
?

Lecture 5: Attention & Transformers53

Ql = I Wl
Q

Kl = I Wl
K

Vl = I Wl
V

Ol = Al′ Vl

Ql, Kl, Vl ∈ ℝn× d
h

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h

Ol ∈ ℝn× d
h

Al′ , Al ∈ ℝn×n

Al′ = softmax(Al)

Al = Ql KlT

Dimensions?

O = [O1; . . . ; Oh] Y

Y ∈ ℝd×d

O ∈ ℝn×d

[O1; . . . ; Oh] ∈ ℝn×d

The Matrices Form of Multi-head Attention

Multi-head Attention is Computationally Efficient

Lecture 5: Attention & Transformers54

• Even though we compute many attention heads, it’s not more costly.

• We compute , and then reshape to .

• Likewise for and .

• Then we transpose to ; now the head axis is like a batch axis.
• Almost everything else is identical. All we need to do is to reshape the tensors!

h
I WQ ∈ ℝn×d ℝn×h× d

h

I WK I WV

ℝh×n× d
h

 sets of attention scores!h

∈ ℝh×n×n
I WQ WT

K IT I WQ WT
K IT

=

I WQ WT
K ITSoftmax() I WV = O′ =Y O ∈ ℝn×d

Scaled Dot Product

Lecture 5: Attention & Transformers55

• “Scaled Dot Product” attention aids in training.

• When dimensionality becomes large, dot products between vectors tend to become
large.
• Because of this, inputs to the softmax function can be large, making the gradients small.

d

• Instead of the self-attention function we’ve
seen:

•

• We divide the attention scores by , to
stop the scores from becoming large just as a
function of (the dimensionality divided by
the number of heads).

Ol = softmax(I Wl
Q Wl

K
T IT) I Wl

V

d/h

d/h

Ol = so0max(
I Wl

Q Wl
K

T IT

d/h
) I Wl

V

The Transformer Decoder

Lecture 5: Attention & Transformers56

Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s

• Now that we’ve replaced self-attention
with multi-head self-attention, we’ll go
through two op5miza5on tricks:
• Residual connection (“Add”)
• Layer normalization (“Norm”)

Output Probabilities

Masked Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

• Residual connections are a trick to help models train better.

• Instead of (where represents the layer)

• We let (so we only have to learn “the residual” from
the previous layer)

• Gradient is great through the residual
connection; it’s 1!

• Bias towards the identity function!

X(i) = Layer(X(i−1)) i

X(i) = X(i−1) + Layer(X(i−1))

Residual Connections

Lecture 5: Attention & Transformers57

X(i−1) Layer X(i)

X(i−1) Layer X(i)+

[no residuals] [residuals]

[Loss landscape visualization,
Li et al., 2018, on a ResNet]

https://arxiv.org/pdf/1712.09913.pdf

Layer Normalization

Lecture 5: Attention & Transformers58

• Layer normalization is a trick to help models train faster.
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean

and standard deviation within each layer.
• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let be an individual (word) vector in the model.

• Let ; this is the mean; .

• Let ; this is the standard deviation; .

• Let and be learned “gain” and “bias” parameters. (Can omit!)

• Then layer normalization computes:

•

𝑥 ∈ ℝ𝑑

𝜇 =
𝑑

∑
𝑗=1

𝑥𝑗 𝜇 ∈ ℝ

𝜎 =
1
𝑑

𝑑

∑
𝑗=1

(𝑥𝑗 − 𝜇)
2

𝜎 ∈ ℝ

𝛾 ∈ ℝ𝑑 𝛽 ∈ ℝ𝑑

output =
𝑥 − 𝜇

𝜎 + 𝜖
∗ 𝛾 + 𝛽Normalize by

scalar mean and
variance

Modulate by learned
element-wise gain and
bias

The Transformer Decoder

Lecture 5: Attention & Transformers59

Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s• The Transformer Decoder is a stack of
Transformer Decoder Blocks.

• Each Block consists of:
• Masked Multi-head Self-attention
• Add & Norm
• Feed-Forward
• Add & Norm

Output Probabilities

Masked Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

The Transformer Encoder

Lecture 5: Attention & Transformers60

Encoder Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r

of
 e

nc
od

er
 b

lo
ck

s

• The Transformer Decoder
constrains to unidirectional
context, as for language
models.

• What if we want bidirectional
context, like in a bidirectional
RNN?

• We use Transformer Encoder —
the ONLY difference is that we
remove the masking in self-
attention.

Output Probabilities

Multi-head
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

No masks!

The Transformer Encoder-Decoder

Lecture 5: Attention & Transformers61

• More on Encoder-Decoder models will be
introduced in the next lecture!

• Right now we only need to know that it processes the
source sentence with a bidirectional model
(Encoder) and generates the target with a
unidirectional model (Decoder).

• The Transformer Decoder is modified to perform
cross-attention to the output of the Encoder. w1, . . . , wt1

wt1+1, . . . , wt2

wt1+2, . . .

++

Lecture 5: Attention & Transformers62

Encoder Inputs

Input Embeddings

Position Embedding

Block

Decoder Inputs

Input Embeddings

Position Embedding

Block

Masked Multi-head
Attention

Add & Norm

Add & Norm

Masked Multi-head
Attention

Multi-head
Attention

Feed-Forward

Add & Norm

Add & Norm

Add & Norm

Feed-Forward

Output Probabilities

Linear

Softmax

Cross-Attention

K V Q

Lecture 5: Attention & Transformers63

Cross-Attention Details

• Self-attention: queries, keys, and values come from the same source.
• Cross-Attention: keys and values are from Encoder (like a memory); queries are

from Decoder.

• Let be output vectors from the Transformer encoder, .

• Let be input vectors from the Transformer decoder, .
• Keys and values from the encoder:

•

•
• Queries are drawn from the decoder:

•

h1, …, h𝑛 hi ∈ ℝd

𝑧1, …, 𝑧𝑛 zi ∈ ℝd

ki = WK hi

vi = WV hi

qi = WQ zi

Transformers: pros and cons

• Easier to capture long-range dependencies: we draw attention between every pair of words!

• Easier to parallelize:
<latexit sha1_base64="Zj1Owf2jr65GlRqNMJIdIlsAOuc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9kVUS9C0YvHFmy70K4lm2bb0GyyJlmhLP0TXjwo4tW/481/Y9ruQVsfDDzem2FmXphwpo3rfjuFldW19Y3iZmlre2d3r7x/0NIyVYQ2ieRS+SHWlDNBm4YZTv1EURyHnLbD0e3Ubz9RpZkU92ac0CDGA8EiRrCxkt9A18hvPzR65YpbdWdAy8TLSQVy1Hvlr25fkjSmwhCOte54bmKCDCvDCKeTUjfVNMFkhAe0Y6nAMdVBNrt3gk6s0keRVLaEQTP190SGY63HcWg7Y2yGetGbiv95ndREV0HGRJIaKsh8UZRyZCSaPo/6TFFi+NgSTBSztyIyxAoTYyMq2RC8xZeXSeus6l1U3cZ5pXaTx1GEIziGU/DgEmpwB3VoAgEOz/AKb86j8+K8Ox/z1oKTzxzCHzifP4YNjvs=</latexit>

Q = XWQ
<latexit sha1_base64="O/Xdn2nZwVqugGAVDtC02kvexhg=">AAAB73icbVBNSwMxEJ34WetX1aOXYBE8lV0R9SIUvQi9VLDtQruWbJptQ7PZNckKZemf8OJBEa/+HW/+G9N2D9r6YODx3gwz84JEcG0c5xstLa+srq0XNoqbW9s7u6W9/aaOU0VZg8YiVl5ANBNcsobhRjAvUYxEgWCtYHgz8VtPTGkey3szSpgfkb7kIafEWMmr4SvstR5q3VLZqThT4EXi5qQMOerd0lenF9M0YtJQQbRuu05i/Iwow6lg42In1SwhdEj6rG2pJBHTfja9d4yPrdLDYaxsSYOn6u+JjERaj6LAdkbEDPS8NxH/89qpCS/9jMskNUzS2aIwFdjEePI87nHFqBEjSwhV3N6K6YAoQo2NqGhDcOdfXiTN04p7XnHuzsrV6zyOAhzCEZyACxdQhVuoQwMoCHiGV3hDj+gFvaOPWesSymcO4A/Q5w9zs47v</latexit>

K = XWK
<latexit sha1_base64="sG8GlMJZBZitk452XyeL5flQu3E=">AAAB73icbVBNS8NAEJ31s9avqkcvi0XwVBIR9SIUvXisYNNAG8tmu2mXbjZxdyOU0D/hxYMiXv073vw3btsctPXBwOO9GWbmhang2jjON1paXlldWy9tlDe3tnd2K3v7nk4yRVmTJiJRfkg0E1yypuFGMD9VjMShYK1weDPxW09MaZ7IezNKWRCTvuQRp8RYyffwFfZbD163UnVqzhR4kbgFqUKBRrfy1eklNIuZNFQQrduuk5ogJ8pwKti43Mk0Swkdkj5rWypJzHSQT+8d42Or9HCUKFvS4Kn6eyInsdajOLSdMTEDPe9NxP+8dmaiyyDnMs0Mk3S2KMoENgmePI97XDFqxMgSQhW3t2I6IIpQYyMq2xDc+ZcXiXdac89rzt1ZtX5dxFGCQziCE3DhAupwCw1oAgUBz/AKb+gRvaB39DFrXULFzAH8Afr8AZVYjwU=</latexit>

V = XWV

• Are positional encodings enough to capture positional information?

Otherwise self-attention is an unordered function of its input

• Quadratic computation in self-attention

Can become very slow when the sequence length is large

Quadratic computation as a function of sequence length
<latexit sha1_base64="Zj1Owf2jr65GlRqNMJIdIlsAOuc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9kVUS9C0YvHFmy70K4lm2bb0GyyJlmhLP0TXjwo4tW/481/Y9ruQVsfDDzem2FmXphwpo3rfjuFldW19Y3iZmlre2d3r7x/0NIyVYQ2ieRS+SHWlDNBm4YZTv1EURyHnLbD0e3Ubz9RpZkU92ac0CDGA8EiRrCxkt9A18hvPzR65YpbdWdAy8TLSQVy1Hvlr25fkjSmwhCOte54bmKCDCvDCKeTUjfVNMFkhAe0Y6nAMdVBNrt3gk6s0keRVLaEQTP190SGY63HcWg7Y2yGetGbiv95ndREV0HGRJIaKsh8UZRyZCSaPo/6TFFi+NgSTBSztyIyxAoTYyMq2RC8xZeXSeus6l1U3cZ5pXaTx1GEIziGU/DgEmpwB3VoAgEOz/AKb86j8+K8Ox/z1oKTzxzCHzifP4YNjvs=</latexit>

Q = XWQ
<latexit sha1_base64="O/Xdn2nZwVqugGAVDtC02kvexhg=">AAAB73icbVBNSwMxEJ34WetX1aOXYBE8lV0R9SIUvQi9VLDtQruWbJptQ7PZNckKZemf8OJBEa/+HW/+G9N2D9r6YODx3gwz84JEcG0c5xstLa+srq0XNoqbW9s7u6W9/aaOU0VZg8YiVl5ANBNcsobhRjAvUYxEgWCtYHgz8VtPTGkey3szSpgfkb7kIafEWMmr4SvstR5q3VLZqThT4EXi5qQMOerd0lenF9M0YtJQQbRuu05i/Iwow6lg42In1SwhdEj6rG2pJBHTfja9d4yPrdLDYaxsSYOn6u+JjERaj6LAdkbEDPS8NxH/89qpCS/9jMskNUzS2aIwFdjEePI87nHFqBEjSwhV3N6K6YAoQo2NqGhDcOdfXiTN04p7XnHuzsrV6zyOAhzCEZyACxdQhVuoQwMoCHiGV3hDj+gFvaOPWesSymcO4A/Q5w9zs47v</latexit>

K = XWK
<latexit sha1_base64="sG8GlMJZBZitk452XyeL5flQu3E=">AAAB73icbVBNS8NAEJ31s9avqkcvi0XwVBIR9SIUvXisYNNAG8tmu2mXbjZxdyOU0D/hxYMiXv073vw3btsctPXBwOO9GWbmhang2jjON1paXlldWy9tlDe3tnd2K3v7nk4yRVmTJiJRfkg0E1yypuFGMD9VjMShYK1weDPxW09MaZ7IezNKWRCTvuQRp8RYyffwFfZbD163UnVqzhR4kbgFqUKBRrfy1eklNIuZNFQQrduuk5ogJ8pwKti43Mk0Swkdkj5rWypJzHSQT+8d42Or9HCUKFvS4Kn6eyInsdajOLSdMTEDPe9NxP+8dmaiyyDnMs0Mk3S2KMoENgmePI97XDFqxMgSQhW3t2I6IIpQYyMq2xDc+ZcXiXdac89rzt1ZtX5dxFGCQziCE3DhAupwCw1oAgUBz/AKb+gRvaB39DFrXULFzAH8Afr8AZVYjwU=</latexit>

V = XWV

n × dq dk × n

n × dv

Need to compute pairs of scores (= dot product)n2 O()n2d

ht = g(Wht−1 + Uxt + b)
RNNs only require running time:O(nd2)

(assuming input dimension = hidden dimension = d)

Quadratic computation as a function of sequence length
Need to compute pairs of scores (= dot product)n2 O()n2d

Max sequence length = 1,024 in GPT-2

What if we want to scale ? For example, to work on long documents?n ≥ 50,000

Lecture 5: Attention & Transformers67

The Revolutionary Impact of Transformers

• Since Transformer has been popularized in
language applications, computer vision also
adapted Transformers, e.g., Vision
Transformers.

[Khan et al., 2021]

• Almost all current-day leading language models use Transformer building blocks.
• E.g., GPT1/2/3/4, T5, Llama 1/2, BERT, … almost anything we can name
• Transformer-based models dominate nearly all NLP leaderboards.

What’s next after
Transformers?

https://arxiv.org/pdf/2101.01169.pdf

