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Announcements

• Assignment 2 is out, due on April 1. 
• Written questions resemble the types of questions that could 

appear on your final exam.



Transformers

(Vaswani et al., 2017)



Transformer encoder-decoder

• Transformer encoder + Transformer decoder

• First designed and experimented on NMT



Transformer encoder-decoder

• Transformer encoder = a stack of encoder layers

• Transformer decoder = a stack of decoder layers

Transformer encoder:  BERT, RoBERTa, ELECTRA

Transformer decoder:  GPT-3, ChatGPT, Palm

Transformer encoder-decoder: T5, BART

• Key innovation: multi-head, self-attention 

• Transformers don’t have any recurrence structures!

ht = f(ht−1, xt) ∈ ℝh



Transformers: roadmap

• From attention to self-attention

• From self-attention to multi-head self-attention

• Feedforward layers

• Positional encoding

• Residual connections + layer normalization

• Transformer encoder vs Transformer decoder



Issues with RNNs: Linear Interaction Distance
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• RNNs are unrolled left-to-right. 
• Linear locality is a useful heuristic: nearby 

words often affect each other’s meaning! Steve Jobs

• However, there’s the vanishing gradient 
problem for long sequences. 
• The gradients that are used to update the 

network become extremely small or "vanish" 
as they are backpropogated from the output 
layers to the earlier layers. 

• Failing to capture long-term dependences.
Steve Jobs Applewho  …

O(sequence length) 



Issues with RNNs: Lack of Parallelizability
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• Forward and backward passes have O(sequence length) unparallelizable operations 
• GPUs can perform many independent computations (like addition) at once! 
• But future RNN hidden states can’t be computed in full before past RNN hidden 

states have been computed. 
• Training and inference are slow; inhibits on very large datasets!

Numbers indicate min # of steps before a state can be computed

1

0

h1

N

hT

2 3

1 2

h2 h3



The New De Facto Method: Attention

Lecture 5: Attention & Transformers9

Instead of deciding the 
next token solely based on 
the previously seen tokens, 
each token will “look at” 
all input tokens at the 
same to decide which 
ones are most important 
to decide the next token.

In practice, the actions of all tokens 
are done in parallel!



Building the Intuition of Attention
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• Attention treats each token’s representation as a query to access and incorporate 
information from a set of values. 
• Today we look at attention within a single sequence. 

• Number of unparallelizable operations does NOT increase with sequence length. 
• Maximum interaction distance: O(1), since all tokens interact at every layer!

All tokens attend to all tokens 
in previous layer; most 
arrows here are omitted

0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

h3

attention

attention

embedding



Attention as a soft, averaging lookup table
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We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys 
that map to values. The query matches 
one of the keys, returning its value.

In attention, the query matches all keys softly, to 
a weight between 0 and 1. The keys’ values are 
multiplied by the weights and summed.



Self-Attention: Basic Concepts
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[Lena Viota Blog]

Query: asking for 
information

Key: saying that it 
has some information

Value: giving the 
information

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html


Self-Attention: Walk-through
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a1 a2 a3 a4

b1 b2 b3 b4

Can be either input or a hidden layer

Self-Attention Layer

Each  is obtained by considering bi ∀ai



Self-Attention: Walk-through

Lecture 5: Attention & Transformers14

a1 a2 a3 a4

b1

How relevant are  to ?a2, a3, a4 a1 We denote the level 
of relevance as α



How to compute ?α
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a1

WQ

a4

WK

q k.

α = q ⋅ k

Method 1 (most common): Dot product Method 2: Additive

a1

WQ

a4

WK

q k

α

tanh

W

We’ll use this!

+



Self-Attention: Walk-through
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α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4attention scores

q1 = WQ a1

q1query

k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3

a1 a2 a3 a4



α1,1 = q1 ⋅ k1

Lecture 5: Attention & Transformers17

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

Self-Attention: Walk-through



α1,1 = q1 ⋅ k1
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α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

Softmax

α′ 

1,2 α′ 

1,3 α′ 

1,4α′ 

1,1

α′ 

1,i =
eα1,i

∑j eα1,j



α1,1 = q1 ⋅ k1

Lecture 5: Attention & Transformers19

α1,2 = q1 ⋅ k2 α1,3 = q1 ⋅ k3 α1,4 = q1 ⋅ k4

q1 = WQ a1

query q1
k2 = WK a2

keyk2
k4 = WK a4

k4
k3 = WK a3

k3
k1 = WK a1

k1

a1 a2 a3 a4

Softmax

α′ 

1,2 α′ 

1,3 α′ 

1,4α′ 

1,1

Denote how relevant each token are to ! 
Use attention scores to extract information

a1
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q1 k2 k4k3k1

α′ 

1,2 α′ 

1,3 α′ 

1,4α′ 

1,1 ×× ××

b1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information

b1 = ∑
i

α′ 

1,i vi
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q1 k2 k4k3k1

α′ 

1,2 α′ 

1,3 α′ 

1,4α′ 

1,1 ×× ××

b1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Use attention scores to extract information

b1 = ∑
i

α′ 

1,i vi

The higher the attention score  is, the 
more important  is to composing 

α′ 

1,i
ai b1



α′ 

2,2 α′ 

2,3×× ×××α′ 

2,1 α′ 

2,4
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q1 k2 k4k3k1 v1 v2 v3 v4

Repeat the same calculation for all  to obtain ai bi

b2 = ∑
i

α′ 

2,i vi

q3 q4q2

b2

a1 a2 a3 a4



α′ 

2,2 α′ 

2,3×× ×××α′ 

2,1 α′ 

2,4
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q1 k2 k4k3k1 v1 v2 v3 v4

Repeat the same calculation for all  to obtain ai bi

b2 = ∑
i

α′ 

2,i vi

q3 q4q2

b2

Note that the computation of  can be 
parallelized, as they are independent to 

each other

bi

a1 a2 a3 a4



= WK

k1 a1

k2 a2

k3 a3

k4 a4

K I
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= WQ

q1 a1

q2 a2

q3 a3

q4 a4

Q I

= WV

v1 a1

v2 a2

v3 a3

v4 a4

V I

Parallelize the computation! 
QKV



Lecture 5: Attention & Transformers25

q1 k2 k4k3k1

α′ 

1,2 α′ 

1,3 α′ 

1,4α′ 

1,1

v1

v1 = WV a1

v2

v2 = WV a2

v3

v3 = WV a3

v4

v4 = WV a4

a1 a2 a3 a4

Parallelize the computation! 
Attention Scores α1,1

k1

α1,2

k2

α1,3

k3

α1,4

k4=

q1
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α1,1

k1

α1,2

k2

α1,3

k3

α1,4

k4=

q1

Parallelize the computation! 
Attention Scores
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=

α1,1 α1,2 α1,3 α1,4α′ 

1,1

α′ 

2,1

α′ 

3,1

α′ 

4,1

α′ 

1,2

α′ 

2,2

α′ 

3,2

α′ 

4,2

α′ 

1,3

α′ 

2,3

α′ 

3,3

α′ 

4,3

α′ 

1,4

α′ 

2,4

α′ 

3,4

α′ 

4,4

k1 k2 k3 k4

q1

α2,1 α2,2 α2,3 α2,4 q2

α3,1 α3,2 α3,3 α3,4 q3
α4,1 α4,2 α4,3 α4,4 q4

A′ A
Q

KT

Parallelize the computation! 
Attention Scores
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=

b1
α′ 

1,1

v1
α′ 

1,2

v2

α′ 

1,3

v3

α′ 

1,4

v4

α′ 

1,1 v1 α′ 

1,2 v2+ α′ 

1,3 v3+ α′ 

1,4 v4+

Parallelize the computation! 
Weighted Sum of Values with Attention Scores
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Parallelize the computation!

α′ 

1,1 α′ 

1,2 α′ 

1,3 α′ 

1,4

=

b1

α′ 

2,1 α′ 

2,2 α′ 

2,3 α′ 

2,4
b2

α′ 

3,1 α′ 

3,2 α′ 

3,3 α′ 

3,4b3

v1

v2

v3

v4
α′ 

4,1 α′ 

4,2 α′ 

4,3 α′ 

4,4b4

A′ 

VO

Parallelize the computation! 
Weighted Sum of Values with Attention Scores
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= WQQ I = WKK I = WVV I

Q KTA′ A =Softmax

A′ = VO

Q = I WQ

K = I WK

V = I WV

O = A′ V

A = I WQ (I WK)T = I WQ WT
K IT

A′ = softmax(A)

A = Q KT
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Q = I WQ

K = I WK

V = I WV

O = A′ V

The Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′ , A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′ = softmax(A)

A = Q KT

Dimensions?

?

?

?
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Q = I WQ

K = I WK

V = I WV

O = A′ V

The Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′ , A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′ = softmax(A)

A = Q KT

Dimensions?



Self-Attention: Summary
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1. Transform each word embedding with weight matrices  , each in WQ, WK, WV ℝd×d

qi = WQ ai (queries) ki = WK ai (keys) vi = WV ai (values)

Let  be a sequence of words in vocabulary , like Steve Jobs founded Apple. 
For each , let , where  is an embedding matrix.

w1:n 𝑉
wi ai = Ewi E ∈ ℝd×|V|

2. Compute pairwise similarities between keys and queries; normalize with softmax

α′ 

i,j =
eαi,j

∑j eαi,jαi,j = kj qi

3. Compute output for each word as weighted sum of values

bi = ∑
j

α′ 

i,j vj



Limitations and Solutions of Self-Attention
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No Sequence Order

No Nonlinearities

Looking into the Future

Position Embedding

Adding Feed-forward Networks

Masking



Limitations and Solutions of Self-Attention
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No Sequence Order Position Embedding

No Nonlinearities Adding Feed-forward Networks

Looking into the Future Masking



No Sequence Order  Position Embedding→

Lecture 5: Attention & Transformers36

• How to incorporate the position info into the self-attention blocks? 

• Just add the  to the input:  

• where  is the embedding of the word at index . 
• In deep self-attention networks, we do this at the first layer. 

• We can also concatenate  and , but more commonly we add them.

pi ̂ai = ai + pi

ai i

ai pi

• All tokens in an input sequence are simultaneously fed into self-attention 
blocks. Thus, there’s no difference between tokens at different positions. 
• We lose the position info!

• How do we bring the position info back, just like in RNNs? 

• Representing each sequence index as a vector:    , for pi ∈ ℝd i ∈ {1,...,n}

qi ki vi

aipi +



Position Representation Vectors via Sinusoids 
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Sinusoidal Position Representations (from the original Transformer paper): 
concatenate sinusoidal functions of varying periods.

cos(𝑖/100002∗1/𝑑)
𝒑𝑖  =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗ 𝑑
2 /𝑑)

cos(𝑖/100002∗ 𝑑
2 /𝑑)

• Periodicity indicates that maybe “absolute position” isn’t as important 
• Maybe can extrapolate to longer sequences as periods restart!

• Not learnable; also the extrapolation doesn’t really work!

Index in the sequence

Di
m

en
sio

n
https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/
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Learnable Position Representation Vectors 

• Flexibility: each position gets to be learned to fit the data

• Cannot extrapolate to indices outside .1,...,n

Learned absolute position representations:  contains learnable parameters. 

• Learn a matrix , and let each  be a column of that matrix 
• Most systems use this method.

pi

p ∈ ℝd×n pi

Sometimes people try more flexible representations of position: 
• Relative linear position attention [Shaw et al., 2018] 
• Dependency syntax-based position [Wang et al., 2019]

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf


Limitations and Solutions of Self-Attention
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No Sequence Order Position Embedding

No Nonlinearities Adding Feed-forward Networks

Looking into the Future Masking



No Nonlinearities  Add Feed-forward Networks→
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There are no element-wise nonlinearities in 
self-attention; stacking more self-attention 
layers just re-averages value vectors. 

Easy Fix: add a feed-forward network 
to post-process each output vector.

a1 a2 an

b1

Self-Attention

…

FF FF FF…

b2 bn

Self-Attention

c1

FF FF FF…

c2 cn

…

…



Limitations and Solutions of Self-Attention
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No Sequence Order Position Embedding

No Nonlinearities Adding Feed-forward Networks

Looking into the Future Masking
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Looking into the Future  Masking→
• In decoders (language modeling, 

producing the next word given 
previous context), we need to 
ensure we don’t peek at the future.

https://jalammar.github.io/illustrated-gpt2/
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• To enable parallelization, we mask 
out attention to future words by 
setting attention scores to .−∞

αi,j = {qi kj, j ≤ i
−∞, j > i

The

chef

who

[START]

For encoding  
these words

The chef
who

[START]

We can look at these (not 
greyed out) words

−∞

−∞−∞

−∞−∞ −∞

• In decoders (language modeling, 
producing the next word given 
previous context), we need to 
ensure we don’t peek at the future.

Looking into the Future  Masking→



Now We Put Things Together
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• Self-attention 
• The basic computation 

• Positional Encoding 
• Specify the sequence order 

• Nonlinearities 
• Adding a feed-forward network at the 

output of the self-attention block 
• Masking 

• Parallelize operations (looking at all tokens) 
while not leaking info from the future

Inputs

+

Output 
Probabilities

Input Embeddings

Position Embedding

Feed-Forward

Masked Self-Attention

Linear

Softmax

BlockRe
pe

at
 fo

r n
um

be
r 

of
 e

nc
od

er
 b

lo
ck

s



The Transformer Decoder
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• Replace self-attention with multi-head 
self-attention.

• A Transformer decoder is what we use 
to build systems like language models.

• It’s a lot like our minimal self-attention 
architecture, but with a few more 
components. 
• Residual connection (“Add”) 
• Layer normalization (“Norm")

Inputs

Input Embeddings

Position Embedding

Re
pe

at
 fo

r n
um

be
r 

of
 e

nc
od

er
 b

lo
ck

s

Output Probabilities

Masked Multi-head 
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

+



Multi-head Attention

• It is better to use multiple attention functions instead of one!

• Each attention function (“head”) can focus on different positions.

“The Beast with Many Heads”

https://jalammar.github.io/illustrated-transformer/

H0 H1 H7
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α′ 

i,i,1 α′ 

i,j,1

bi,1

× ×

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

ajMulti-head Attention

Multi-Head Attention: Walk-through
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α′ 

i,i,2 α′ 

i,j,2

bi,2

××

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

ajMulti-head Attention

Multi-Head Attention: Walk-through



× ×
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××

qi,1 qi,2 ki,1 ki,2 vi,1 vi,2 qj,1 qj,2 kj,1 kj,2 vj,1 vj,2

qi ki vi

ai

qj kj vj

aj

bi,2

bi,1
Y=bi

Multi-head Attention

Some 
transformation

Concatenation
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Q = I WQ

K = I WK

V = I WV

O = A′ V

Recall the Matrices Form of Self-Attention

Q, K, V ∈ ℝn×d

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

WQ, WK, WV ∈ ℝd×d

O ∈ ℝn×d

A′ , A ∈ ℝn×nA = I WQ (I WK)T = I WQ WT
K IT

A′ = softmax(A)

A = Q KT



Multi-head Attention in Matrices
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• Multiple attention “heads” can be defined via multiple  matrices 

• Let , where  is the number of attention heads, and  ranges 
from 1 to . 

• Each attention head performs attention independently: 

•  

• Concatenating different  from different attention heads. 

• , where 

WQ, WK, WV

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h h l
h

Ol = softmax(I Wl
Q Wl

K
T IT) I Wl

V

Ol

O = [O1; . . . ; On] Y Y ∈ ℝd×d
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Ql = I Wl
Q

Kl = I Wl
K

Vl = I Wl
V

Ol = Al′ Vl

The Matrices Form of Multi-head Attention

Ql, Kl, Vl ∈ ℝn× d
h

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h

Ol ∈ ℝn× d
h

Al′ , Al ∈ ℝn×n

Al′ = softmax(Al)

Al = Ql KlT

Dimensions?

?

?

?

O = [O1; . . . ; Oh] Y

Y ∈ ℝd×d

O ∈ ℝn×d

[O1; . . . ; Oh] ∈ ℝn×d?
?
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Ql = I Wl
Q

Kl = I Wl
K

Vl = I Wl
V

Ol = Al′ Vl

Ql, Kl, Vl ∈ ℝn× d
h

, where I = {a1, . . . , an} ∈ ℝn×d ai ∈ ℝd

Wl
Q, Wl

K, Wl
V ∈ ℝd× d

h

Ol ∈ ℝn× d
h

Al′ , Al ∈ ℝn×n

Al′ = softmax(Al)

Al = Ql KlT

Dimensions?

O = [O1; . . . ; Oh] Y

Y ∈ ℝd×d

O ∈ ℝn×d

[O1; . . . ; Oh] ∈ ℝn×d

The Matrices Form of Multi-head Attention



Multi-head Attention is Computationally Efficient
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• Even though we compute  many attention heads, it’s not more costly. 

• We compute , and then reshape to . 

• Likewise for  and . 

• Then we transpose to ; now the head axis is like a batch axis. 
• Almost everything else is identical. All we need to do is to reshape the tensors!

h
I WQ ∈ ℝn×d ℝn×h× d

h

I WK I WV

ℝh×n× d
h

 sets of attention scores!h

∈ ℝh×n×n
I WQ WT

K IT I WQ WT
K IT

=

I WQ WT
K ITSoftmax(             ) I WV = O′ =Y O ∈ ℝn×d



Scaled Dot Product
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• “Scaled Dot Product” attention aids in training. 

• When dimensionality  becomes large, dot products between vectors tend to become 
large. 
• Because of this, inputs to the softmax function can be large, making the gradients small.

d

• Instead of the self-attention function we’ve 
seen: 

•  

• We divide the attention scores by , to 
stop the scores from becoming large just as a 
function of  (the dimensionality divided by 
the number of heads).

Ol = softmax(I Wl
Q Wl

K
T IT) I Wl

V

d/h

d/h

Ol = so0max(
I Wl

Q Wl
K

T IT

d/h
) I Wl

V



The Transformer Decoder
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Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r 

of
 e

nc
od

er
 b

lo
ck

s

• Now that we’ve replaced self-attention 
with multi-head self-attention, we’ll go 
through two op5miza5on tricks: 
• Residual connection (“Add”) 
• Layer normalization (“Norm”)

Output Probabilities

Masked Multi-head 
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm



• Residual connections are a trick to help models train better. 

• Instead of  (where  represents the layer) 

• We let  (so we only have to learn “the residual” from 
the previous layer) 

• Gradient is great through the residual 
connection; it’s 1! 

• Bias towards the identity function!

X(i) = Layer(X(i−1)) i

X(i) = X(i−1) + Layer(X(i−1))

Residual Connections
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X(i−1) Layer X(i)

X(i−1) Layer X(i)+

[no residuals] [residuals]

[Loss landscape visualization, 
Li et al., 2018, on a ResNet]

https://arxiv.org/pdf/1712.09913.pdf


Layer Normalization
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• Layer normalization is a trick to help models train faster. 
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit mean 

and standard deviation within each layer. 
• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019] 

• Let  be an individual (word) vector in the model. 

• Let ; this is the mean; . 

• Let ; this is the standard deviation; . 

• Let  and  be learned “gain” and “bias” parameters. (Can omit!) 

• Then layer normalization computes: 

•

𝑥 ∈ ℝ𝑑

𝜇 =
𝑑

∑
𝑗=1

𝑥𝑗 𝜇 ∈ ℝ

𝜎 =
1
𝑑

 
𝑑

∑
𝑗=1

(𝑥𝑗 − 𝜇)
2

𝜎 ∈ ℝ

𝛾 ∈ ℝ𝑑 𝛽 ∈ ℝ𝑑

output =
𝑥  − 𝜇

𝜎 + 𝜖
∗ 𝛾 + 𝛽Normalize by 

scalar mean and 
variance

Modulate by learned 
element-wise gain and 
bias



The Transformer Decoder
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Inputs

+

Input Embeddings

Position Embedding

Block

Re
pe

at
 fo

r n
um

be
r 

of
 e

nc
od

er
 b

lo
ck

s• The Transformer Decoder is a stack of 
Transformer Decoder Blocks. 

• Each Block consists of: 
• Masked Multi-head Self-attention 
• Add & Norm 
• Feed-Forward 
• Add & Norm

Output Probabilities

Masked Multi-head 
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm



The Transformer Encoder
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Encoder Inputs

+

Input Embeddings

Position Embedding

Block
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• The Transformer Decoder 
constrains to unidirectional 
context, as for language 
models. 

• What if we want bidirectional 
context, like in a bidirectional 
RNN? 

• We use Transformer Encoder — 
the ONLY difference is that we 
remove the masking in self-
attention.

Output Probabilities

Multi-head 
Attention

Linear

Softmax

Feed-Forward

Add & Norm

Add & Norm

No masks!



The Transformer Encoder-Decoder
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• More on Encoder-Decoder models will be 
introduced in the next lecture! 

• Right now we only need to know that it processes the 
source sentence with a bidirectional model 
(Encoder) and generates the target with a 
unidirectional model (Decoder). 

• The Transformer Decoder is modified to perform 
cross-attention to the output of the Encoder. w1, . . . , wt1

wt1+1, . . . , wt2

wt1+2, . . .



++
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Encoder Inputs

Input Embeddings

Position Embedding

Block

Decoder Inputs

Input Embeddings

Position Embedding

Block

Masked Multi-head 
Attention

Add & Norm

Add & Norm

Masked Multi-head 
Attention

Multi-head 
Attention

Feed-Forward

Add & Norm

Add & Norm

Add & Norm

Feed-Forward

Output Probabilities

Linear

Softmax

Cross-Attention

K V Q
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Cross-Attention Details 

• Self-attention: queries, keys, and values come from the same source. 
• Cross-Attention: keys and values are from Encoder (like a memory); queries are 

from Decoder. 

• Let  be output vectors from the Transformer encoder, . 

• Let  be input vectors from the Transformer decoder, . 
• Keys and values from the encoder: 

•  

•  
• Queries are drawn from the decoder: 

•

h1, …, h𝑛 hi ∈ ℝd

𝑧1, …,  𝑧𝑛 zi ∈ ℝd

ki = WK hi

vi = WV hi

qi = WQ zi



Transformers: pros and cons

• Easier to capture long-range dependencies: we draw attention between every pair of words!

• Easier to parallelize:
<latexit sha1_base64="Zj1Owf2jr65GlRqNMJIdIlsAOuc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9kVUS9C0YvHFmy70K4lm2bb0GyyJlmhLP0TXjwo4tW/481/Y9ruQVsfDDzem2FmXphwpo3rfjuFldW19Y3iZmlre2d3r7x/0NIyVYQ2ieRS+SHWlDNBm4YZTv1EURyHnLbD0e3Ubz9RpZkU92ac0CDGA8EiRrCxkt9A18hvPzR65YpbdWdAy8TLSQVy1Hvlr25fkjSmwhCOte54bmKCDCvDCKeTUjfVNMFkhAe0Y6nAMdVBNrt3gk6s0keRVLaEQTP190SGY63HcWg7Y2yGetGbiv95ndREV0HGRJIaKsh8UZRyZCSaPo/6TFFi+NgSTBSztyIyxAoTYyMq2RC8xZeXSeus6l1U3cZ5pXaTx1GEIziGU/DgEmpwB3VoAgEOz/AKb86j8+K8Ox/z1oKTzxzCHzifP4YNjvs=</latexit>

Q = XWQ
<latexit sha1_base64="O/Xdn2nZwVqugGAVDtC02kvexhg=">AAAB73icbVBNSwMxEJ34WetX1aOXYBE8lV0R9SIUvQi9VLDtQruWbJptQ7PZNckKZemf8OJBEa/+HW/+G9N2D9r6YODx3gwz84JEcG0c5xstLa+srq0XNoqbW9s7u6W9/aaOU0VZg8YiVl5ANBNcsobhRjAvUYxEgWCtYHgz8VtPTGkey3szSpgfkb7kIafEWMmr4SvstR5q3VLZqThT4EXi5qQMOerd0lenF9M0YtJQQbRuu05i/Iwow6lg42In1SwhdEj6rG2pJBHTfja9d4yPrdLDYaxsSYOn6u+JjERaj6LAdkbEDPS8NxH/89qpCS/9jMskNUzS2aIwFdjEePI87nHFqBEjSwhV3N6K6YAoQo2NqGhDcOdfXiTN04p7XnHuzsrV6zyOAhzCEZyACxdQhVuoQwMoCHiGV3hDj+gFvaOPWesSymcO4A/Q5w9zs47v</latexit>

K = XWK
<latexit sha1_base64="sG8GlMJZBZitk452XyeL5flQu3E=">AAAB73icbVBNS8NAEJ31s9avqkcvi0XwVBIR9SIUvXisYNNAG8tmu2mXbjZxdyOU0D/hxYMiXv073vw3btsctPXBwOO9GWbmhang2jjON1paXlldWy9tlDe3tnd2K3v7nk4yRVmTJiJRfkg0E1yypuFGMD9VjMShYK1weDPxW09MaZ7IezNKWRCTvuQRp8RYyffwFfZbD163UnVqzhR4kbgFqUKBRrfy1eklNIuZNFQQrduuk5ogJ8pwKti43Mk0Swkdkj5rWypJzHSQT+8d42Or9HCUKFvS4Kn6eyInsdajOLSdMTEDPe9NxP+8dmaiyyDnMs0Mk3S2KMoENgmePI97XDFqxMgSQhW3t2I6IIpQYyMq2xDc+ZcXiXdac89rzt1ZtX5dxFGCQziCE3DhAupwCw1oAgUBz/AKb+gRvaB39DFrXULFzAH8Afr8AZVYjwU=</latexit>

V = XWV

• Are positional encodings enough to capture positional information?

Otherwise self-attention is an unordered function of its input

• Quadratic computation in self-attention

Can become very slow when the sequence length is large



Quadratic computation as a function of sequence length
<latexit sha1_base64="Zj1Owf2jr65GlRqNMJIdIlsAOuc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9kVUS9C0YvHFmy70K4lm2bb0GyyJlmhLP0TXjwo4tW/481/Y9ruQVsfDDzem2FmXphwpo3rfjuFldW19Y3iZmlre2d3r7x/0NIyVYQ2ieRS+SHWlDNBm4YZTv1EURyHnLbD0e3Ubz9RpZkU92ac0CDGA8EiRrCxkt9A18hvPzR65YpbdWdAy8TLSQVy1Hvlr25fkjSmwhCOte54bmKCDCvDCKeTUjfVNMFkhAe0Y6nAMdVBNrt3gk6s0keRVLaEQTP190SGY63HcWg7Y2yGetGbiv95ndREV0HGRJIaKsh8UZRyZCSaPo/6TFFi+NgSTBSztyIyxAoTYyMq2RC8xZeXSeus6l1U3cZ5pXaTx1GEIziGU/DgEmpwB3VoAgEOz/AKb86j8+K8Ox/z1oKTzxzCHzifP4YNjvs=</latexit>

Q = XWQ
<latexit sha1_base64="O/Xdn2nZwVqugGAVDtC02kvexhg=">AAAB73icbVBNSwMxEJ34WetX1aOXYBE8lV0R9SIUvQi9VLDtQruWbJptQ7PZNckKZemf8OJBEa/+HW/+G9N2D9r6YODx3gwz84JEcG0c5xstLa+srq0XNoqbW9s7u6W9/aaOU0VZg8YiVl5ANBNcsobhRjAvUYxEgWCtYHgz8VtPTGkey3szSpgfkb7kIafEWMmr4SvstR5q3VLZqThT4EXi5qQMOerd0lenF9M0YtJQQbRuu05i/Iwow6lg42In1SwhdEj6rG2pJBHTfja9d4yPrdLDYaxsSYOn6u+JjERaj6LAdkbEDPS8NxH/89qpCS/9jMskNUzS2aIwFdjEePI87nHFqBEjSwhV3N6K6YAoQo2NqGhDcOdfXiTN04p7XnHuzsrV6zyOAhzCEZyACxdQhVuoQwMoCHiGV3hDj+gFvaOPWesSymcO4A/Q5w9zs47v</latexit>

K = XWK
<latexit sha1_base64="sG8GlMJZBZitk452XyeL5flQu3E=">AAAB73icbVBNS8NAEJ31s9avqkcvi0XwVBIR9SIUvXisYNNAG8tmu2mXbjZxdyOU0D/hxYMiXv073vw3btsctPXBwOO9GWbmhang2jjON1paXlldWy9tlDe3tnd2K3v7nk4yRVmTJiJRfkg0E1yypuFGMD9VjMShYK1weDPxW09MaZ7IezNKWRCTvuQRp8RYyffwFfZbD163UnVqzhR4kbgFqUKBRrfy1eklNIuZNFQQrduuk5ogJ8pwKti43Mk0Swkdkj5rWypJzHSQT+8d42Or9HCUKFvS4Kn6eyInsdajOLSdMTEDPe9NxP+8dmaiyyDnMs0Mk3S2KMoENgmePI97XDFqxMgSQhW3t2I6IIpQYyMq2xDc+ZcXiXdac89rzt1ZtX5dxFGCQziCE3DhAupwCw1oAgUBz/AKb+gRvaB39DFrXULFzAH8Afr8AZVYjwU=</latexit>

V = XWV

n × dq dk × n

n × dv

Need to compute  pairs of scores (= dot product)n2 O( )n2d

ht = g(Wht−1 + Uxt + b)
RNNs only require  running time:O(nd2)

(assuming input dimension = hidden dimension = d)



Quadratic computation as a function of sequence length
Need to compute  pairs of scores (= dot product)n2 O( )n2d

Max sequence length = 1,024 in GPT-2

What if we want to scale ? For example, to work on long documents?n ≥ 50,000



Lecture 5: Attention & Transformers67

The Revolutionary Impact of Transformers

• Since Transformer has been popularized in 
language applications, computer vision also 
adapted Transformers, e.g., Vision 
Transformers.

[Khan et al., 2021]

• Almost all current-day leading language models use Transformer building blocks. 
• E.g., GPT1/2/3/4, T5, Llama 1/2, BERT, … almost anything we can name 
• Transformer-based models dominate nearly all NLP leaderboards.

What’s next after 
Transformers?

https://arxiv.org/pdf/2101.01169.pdf

