COMP 3361 Natural Language Processing

Lecture 10: Neural language models:
RNNs and LSTM

Spring 2025

Announcements

® Assignment 2 will be out today.

Lecture plan

® Recurrent Neural Networks (RNNs) (cont’)
® | ong Short-Term Memory (LSTM)

Language modeling with neural networks

Recurrent neural networks
Idea 2: Recurrent Neural Networks (RNNs)

Essential components:

® One network is applied recursively to the sequence

® |nputs: previous hidden state -1, observation

® Outputs: next hidden state /¢, (optionally) output ¥t

® Memory about history is passed through hidden states

p(x|START) p(x|START I) - p(x|START I went to the park.)

20000000

Example RNN

Embedding

p(x|START I)

Variables:

Zt: input (embedding) vector
Yt: output vector (logits)

Pt: probability over tokens
hi—1: previous hidden vector
ht: next hidden vector

Oh: activation function for
hidden state

9y: output activation function

Equations:
hy := Oh(WhCIZ‘t + Uphi—1 + bh)

Yt - — O'y(Wyht -+ by)
eXp(yti)
Z?:j eXp(ytj)

Pt; —

Example RNN

What are trainable parameters@?

yY = P(z®|the students opened their)

books
l laptops

output distribution
gt = softmax (Uh(” + b2) e RV - _I_ -

< >

d A 200

U
h(®__ hl) h(2) h(h(4)
hidden states ® @
B _ (Whh(t‘” W 4 bl) @ W, g e W, . Wy, . Wy, g
O O

h(9) is the initial hidden state O O

word embeddings
elt) — pqpt)

e(1) e(3)

oooo]g{ooco]

&

EL
—{oooo]g[oooo]g

students
7(2)

=

the
(1)

words / one-hot vectors

a}'(t) - Rlvl m(3)

Note: this input sequence could be much
longer now!

opened

®
~~
—
e

oooo]g{oooo

'l

their

(4)

Recurrent neural networks

® How can information from time an earlier state (e.g., time 0) pass to a
later state (time t?)

® Through the hidden states!

® Fven though they are continuous vectors, can represent very rich
information (up to the entire history from the beginning)

Pwi,wy, ...ow,) = P(w)) X P(wy | w)) X P(ws | wi,wy) X ..o XP(w, | Wi, Wsy ccoow, 1)

No Markov
= P(w; | hy) X P(w, | h)) X P(ws | hy) X ... x P(w, | h,_)) assumption here!
p(z|START) p(z|START I) : p(z|START I went to the park.)

20000000

Training procedure

E.g., it you wanted to train on "<START>| went to the park.<STOP>"...

1. Input/Output Pairs

X (input)
START
START |

START | went
START | went to
START | went to the
START | went to the park
START | went to the park.

Training procedure

I InpuvyQutput Pairs 2. Run model on (batch of)@%§ from
data D to get probability
XS(;%“T") distributions/# (running softmax at
START | end to ensure valid probability
START | went CoL :
START | went to distribution)

START | went to the

START | went to the park
START | went to the park.

Training procedure

2. Run model on (batch of) 2's from

data D to get probability
distributionsi#

3. Calculate loss compared to true

. Or—\OO:

0 Y's (Cross Entropy Loss)

LCE Z Yi log

Yt

oc:o»—x:

Training procedure r1.x(y Zyz log(#

p(STOP|START)| -01

-
»(The|START) | .03 0 }ctual observed word) 3. Calculate loss compared to true
p(IIST@?E 6(1)1 ”y (1) Y's (Cross Entropy Loss)

p(apple|START) _.062_

Lcee(y1,y1) = —0xlog(.01) — 0 xlog(.03) — 1 x —log(.1) — --- — 0 * log(.002)
A —log(.1) = —log(p(I|START))
J
:z:|START

3-8 W o000

Training procedure - gradient descent step

Get training x-y pairs from batch
. Run model to get probability distributions over ¥

1.

2

3. Calculate loss compared to true ¥
4. Backpropagate to get the gradient
5.

Take a step of gradient descent 0" =0 — s g_g(@(i))

p(x | START

a-u-u-0-0B-0-0-

Bidirectional RN Ns

This contextual representation of “terribly”

has both left and right context!

/

Q| (0 0 0) (@

O O @) O O O

O O @) @ g g
Concatenated O @) @ @) . h
hidden states O O ® O O O ht _f(ht—l’ Xt) E R

O @) ®) Q O O

O O @) O O O

O O O O O @)

W\ TN K 1 K h\

0 0 o o o o 3 Y
Backward RNN - oL -’ -’ Q| O ht=f1(ht_1,Xt),t= 1,2,...71
ackward RN O o) 0 J o O O
O (@) O O O O

I e I < i P < «—

el / |e|l/ |® / | / (@ / |@| / — — _
Forward RNN o/ |o|/ |o|/ |eo|/ |o|/ |eo|/ h,=fH(h,,x),t=nn-1,..1

‘ / . / . / . / ’ / . /

@ ®| @) Q| Q| ®| Y >

/ / / 7/ // Y h.=1|h.h RZh
/ ;‘E / _1/7 / T r | 1 l‘] =
the movie was terribly exciting /

Multi-layer RNNs

o] (e 0 0 o] (e
RNN layer 3 : : : > : > : > : :
O O O O @) O
" —’ et —’ o —
@) O :
RNN layer 2 0 o 1@ 0O O O
e @ @& & & @ Thehidden states from RNN layer i
o (e (o0 (e (e (e are the inputs to RNN layer i + 1
RNN layer 1 : s : : 2 : . : > :
the movie was terribly exciting /

e In practice, using 2 to 4 layers is common (usually better than 1 layer)
e Transformer networks can be up to 24 layers with lots of skip-connections

RNN encoder-decoder for machine translation

Amo el aprendizaje <end>
oftm softm softm softmax

<start> AMo el aprendizaje

n Decoder
Encoder

-+4-441

<start> love learning <end>

https://www.baeldung.com/cs/nlp-encoder-decoder-models

RNNSs - vanishing gradient problem

What word is likely to come next for this sequence?

Anne said, "Hi! My name is

RNNSs - vanishing gradient problem

What word is likely to come next for this sequence?

Anne said, “"Hi! My name is
p(z|START Anne said, “Hi! My name is)

RN RNN TS RNN SN RNN TSN /RNN
A A

® Need relevant information to flow across many time steps

® \When we backpropagate, we want to allow the relevant information to
flow

RNNSs - vanishing gradient problem

p(z|START Anne said, “Hil My name is) =3¢

5 —
ho»m—»hl» RNN gil2lms RNN BREES RNN TS pnn NN gy N Y
*

. Backprop steps
. = 0,W, @ay(Wyhs + by)

oL

0y

O, _5ht—|—1Uh @O‘h tht—l—l —I—Uhht—l—bh oo _5h8Uh @O’h Wh.CCg—I—Uhh7—|—bh)
However, when we backprop, it T any of are close to zero,
involves multiplying a chain of the whole gradient goes to zero
computations from time t7to time t1... (vanishes!)

The vanishing gradient problem

RNNSs - vanishing gradient problem

T / Sigmoid Derivative RelLU Derivative
5ht — 5ht—|—1Uh @O‘h(Wh.CE‘t+1 + Up hy —I—bh) 025 - 1.0 -
It any of are close to zero, the - .
whole gradient goes to zero (vanishes!) 0.05 - 02
The vanishing gradient problem Y T \ /' T

Danger Zone

J— L
This happens often for many activation nhDerivative & i GELU Derivative

functions... the gradient is close to zero Lo- n . N
when outputs get very large or small :: -

® The more time steps back, the more 04- os-
chances for a vanishing gradient 02 j & . L)

SO‘UtiOﬂI LSTMS! '_.10 5 0 5 10 10 -5 0 5 10

LSTMs

Idea 3: Long short-term
memory network

Essential components:

® |tis arecurrent neural
network (RNN)

® Has modules to learn when
to "“remember”/“torget”
iInformation

® Allows gradients to flow
more easily

fo = og(Wixs + Ugphi 1 + by)

it = 0g(Wixy + Ushy—1 + b;)
(ot + Ushy_1 bo)

¢t = oc(Wexy +Uchi—1 + be)

Ct = Jt © Cci—1 + 14 © ¢

hy = 0y © op(ct)

z; € R%: input vector to the LSTM unit

fr € (0, 1)h . forget gate’s activation vector

i € (0,1)": input/update gate’s activation vector
o: € (0, 1)h . output gate’s activation vector

he € (—1,1)": hidden state vector also known as output
vector of the LSTM unit

¢ € (—1, 1)h: cell input activation vector

c; € R"™: cell state vector

LSTM architecture

LSTM architecture

fo = og(Wyzy +Ugph 1 + by)
it = 0g(Wixy + Uihyi—1 + ;)

Cell state (long term 0y = 0g(Woxy + Ushi—1 + bo)
memory): allows information . o Gt = 0c(Weay + Uchy—1 + be)
to flow with only small, linear ——— = O 0 O 6
interactions (good for hy = 0 ® op(ct)
gradients!)
® "Gates” optionaHy et z; € RY: input vector to the LSTM unit
information through —®_ fr € (0, Z-)h: forget gate’s activation vec
®@ 1 -retain information ? i € (0,1)": input/update gate’s activaf
(”remember”) CII 0, € (0,1)": output gate’s activation ve:
e (- forgetinformation o — > htvicioj’olf)ﬂ;eh;dsie&i:f vector also
(“forget”) et Operation Tnster | Concatenate Copy

& € (—1,1)": cell input activation vect

c; € R": cell state vector

LSTM architecture

fo = 0g(Wyxy + Ushy—1 + by)
it = 0g(Wizy + Uihi—1 + b;)
Input Gate Layer: Decide 01 = 0g(Woxs + Uohy—1 + bo)
¢t = oc(Wexy + Uchy—1 + be)
ct = Jt ©ci—1+1 ©C¢
he = oy © op(ct)

what information to
"torget”

z; € R%: input vector to the LSTM unit

f, € (0,1)": forget gate’s activation vector

i € (0,1)": input/update gate’s activation vector

0, € (0,1)": output gate’s activation vector

h: € (—1,1)": hidden state vector also known as output
vector of the LSTM unit

& € (—1,1)": cell input activation vector

c; € R"™: cell state vector

LSTM architecture

fo = og(Wyay +Ugpht 1 + by)
it = 0g(Wixy + Ushy—1 + b;)
Candidate state values: ot = 0g(Wort + Ushi—1 + bo)
¢t = oc(Wexy +Uchi—1 + bc)
ct = Jt ©ci—1 + 1t © ¢
he = or © op(ct)

Extract candidate
information to put into the

cell vector

z; € R%: input vector to the LSTM unit

fr € (0,)h . forget gate’s activation vector

i € (0,1)": input/update gate’s activation vector

0, € (0,1)": output gate’s activation vector

h: € (—1,1)": hidden state vector also known as output
vector of the LSTM unit

& € (—1,1)": cell input activation vector

c; € R"™: cell state vector

LSTM architecture

Update cell: “Forget” the
information we decided to
forget and update with
new candidate information

f ftis
® High: we
“remember”

more previous
info

® [ow: we "forget”
more info

Y
C

Ci—1
ftT ’l'tr’v@
C,

fo = og(Wias +Ughi 1 + by)
it = 0g(Wizy + Uihi—1 + b;)
Or — O'g(WO.CCt -+ Uoht_l -+ bo) H: 1t 1S

Ct = O-C(cht + Ucht—l + bc) o ngh we

ct = ft ©ci—1+ 1 O ¢ add more

hy = 0 © op(c) new info

r; € R:
ft € (0,
it € (0,1
o; € (0,1
hy € (—1

® [ow: we add

input vector to the LSTM unit less new info

1)": forget gate’s activation vector

)": input/update gate’s activation vector

)": output gate’s activation vector

,1)": hidden state vector also known as output

vector of the LSTM unit

& € (—1,1)": cell input activation vector

c; € R"™: cell state vector

LSTM architecture

ft — Oy Wfﬂft —|—Ufht 1 —|—bf)

(
it:Ug(W$t+Uht 1‘|—b)
Output/Short-term Memory o

, | o = 0g(Woxy + Uohi—1 + b,)
(as in RNN): Pass on ¢t = 0o(Wewy + Ushi—1 + be)
Pass information onto the next different = F, ey +iy @ G
state/for use in output (e.qg., information hy = 0; ® oy (cr)
probabilities) than in the

h, long-term

z; € R%: input vector to the LSTM unit
memaory vector

fr € (0,)h . forget gate’s activation vector

i € (0,1)": input/update gate’s activation vector

0, € (0,1)": output gate’s activation vector

h: € (—1,1)": hidden state vector also known as output
vector of the LSTM unit

& € (—1,1)": cell input activation vector

c; € R"™: cell state vector

LSTMs (summary)

Pros:
® \Works for arbitrary sequence lengths (as RNNs)

® Address the vanishing gradient problems via long- and short-term
memory units with gates

Cons:

® Calculations are sequential - computation at time t depends entirely
on the calculations done at time t-1

® As a result, hard to parallelize and train

Enter transformers...

