COMP 3361 Natural Language Processing

Lecture 9: Neural language models:
RNNs and LSTM

Spring 2025

Announcements

® Tutorial on Assignment 1 by TA.

® Make sure you check out the recorded tutorial on PyTorch ana
Huggingkace

Latest Al news

® GPT4.5 is public now.

OpenAl .» @OpenAl - 3h o @ OpenAl & @OpenAl-3h N N
Today we're releasing a research preview of GPT-4.5—our largest and best GPT-4.5is a step forward in scaling up pre-training and post-training. By
model for chat yet. scaling unsupervised learning, GPT-4.5 improves its ability to recognize

patterns, draw connections, and generate creative insights without
Rolling out now to all ChatGPT Pro users, followed by Plus and Team users reasoning.

next week, then Enterprise and Edu users the following week.

Introducing GPT-4.5 | - S
/, o
From openai.com

Q 42 1160 Q 406 il 86K H &
Q 272 QN 674 Q 27K il 621K W &

https://openai.com/index/introducing-gpt-4-5/

Lecture plan

® Tokenization (cont’)
® Recurrent Neural Networks (RNNs)
® | ong Short-Term Memory (LSTM)

Neural language models: tokenization

Byte-pair encoding: tokenization/encoding
V={1:",2:",3:%€,4:4,5:¢,6:h’,7:7,
8:°k’9:'m’,10:'n’, 11 : ‘p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’,16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’, 20 : * hug’}
Encoding algorithm
Given string S and (ordered) vocab V,
® Pretokenize D in same way as before
® Tokenize D into characters

® Perform merge rules in same order as in training until no more merges
may be done

Byte-pair encoding: tokenization/encoding
V={1:",2:",3:%€,4:4,5:¢,6:h’,7:7,
8:°k’9:'m’,10:'n’, 11 : ‘p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’,16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’,20 : ¢ hug’}

Encoding algorithm
Encode(“ hugs”)

Encode(“misshapenness”)

20, 12]

® Pretokenize D in same way as 9, 1,12,12,6, 2,
before 11, 3,10, 10, 3,12, 12]

® Tokenize D into characters

Given string S and (ordered) vocab)V

® Perform merge rules in same order
as in training until no more merges
may be done

Byte-pair encoding: decoding
V={1:7,2:a,3:%,4:1,5:¢,6: W, 7:%9,
8:°k,9:'m’,10:‘n’, 11 : p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’, 16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’, 20 : © hug’}

DeCOdlng algorlthm Encode(“ hugs”)

20, 12]
Encode(“misshapenness”) = [9,7,12,12,6, 2,
® |nitialize string S 1= ik 11, 3,10, 10, 3, 12, 12]
® Keep popping off tokens from the
front ot 1" and appending the
corresponding string to S

Given list of tokens T':

Decode(|20,12]) = “ hugs”
Decode([9,7,12,12,6,2,11, 3,10, 10, 3,12, 12])

— “misshapenness”

Byte-pair encoding: properties

® Efficientto run (greedy vs. global optimization)
® | ossless compression

® Potentially some shared representations - e.g., the token "hug” could
be used both in “"hug” and "hugging”

Weird properties of tokenizers

® [oken !|=word run run RunRun (6236, 1629, 6588, 6869]

® Spaces are part of token

17

® “run” is a different token than ” run

® Not invariant to case changes rokenos |

® "Run” is a different token than “run”

Weird properties of tokenizers

tokenization ATEROT
® Token !=word EStreamFrame
o Spaces are part Of token NLP SolldGoldMaglkarp
y " - : N . PsyNetMessage
® "run” is a different token than * run don't -
embedreportprint
® Notinvariant to case changes victory Py
® “Run” is a different token than “run” lose oreAndOnline
. : . Co StreamerBot
® Tokenization fits statistics of your data ,
GoldMagikarp
® c.g., while these words are multiple tokens... /v externalToEVA
® These words are all 1 token in GPT-3's tokenizer! TheNitrome
TheNitromeFan
o \WVhy? . .
RandomRedditorWithNo
® Reddit usernames and certain code attributes appearead Y e

enough in the corpus to surface as its own token!

Example from https://www.lesswrong.com/posts/aPeJE8bSo6rAFol gg/solidgoldmagikarp-plus-prompt-generation

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

Other tokenization variants

Variants: no spaces in tokens

® The way we presented BPE, we included whitespace with the following word. (E.g., ” pug”)
® Thisis most common in modern LMs o~ space

® However, in another BPE variant, you instead strip whitespace (e.g., "pug”) and add spaces
oetween words at decoding time ~no space

® This was the original BPE paper’s implementation!
® Example:

o ["I" "hug” “pugs”] -> "l hug pugs” (w/out whitespace)

o [“"," hug”, " pugs”] -> “l hug pugs” (w/ whitespace)

Original (w/ whitespace) Updated (w/out whitespace)
Required: Required:
e Documents D e Documents D
e Desired vocabulary size IV (greater than chars in D) e Desired vocabulary size N (greater than chars in D)
Algorithm: Algorithm:
- Pre-tokenize D by splitting into words (split + Pre-tokenize D by splitting into words
before whitespace/punctuation) (removing whitespace)

® |nitialize V as the set of characters in D ® |nitialize V as the set of characters in D

Variants: no spaces in tokens

® For sub-word tokens, need to add “continue word” special character

/7

® E.g., forthe word “Tokenization”, it the subword tokens are “Token
and “ization”

® \V/out special character: ["Token”, "ization"] -> “Token ization”

® \\V/ special character #: ["Token”, "#ization”] -> Tokenization”

® \When decoding, it does not have special character add a space

® Example:
‘ [Illlll Il‘ill’ II#EkeII II ll Ilhugll ”pug”, II#L II] > II| ‘Ike _to hug pugs

Variants: no spaces in tokens

® | oses some whitespace information (lossy compression!)

Il|

® [£.g., Tokenize("l eat cake.”) == Tokenize(

® Especially problematic for code (e.g., Python) - why?

tokenizer = AutoTokenizer.from_pretrained("openai-gpt")
tokens = tokenizer.encode('"i eat cake.")

print(tokens)

print(tokenizer.decode(tokens))

tokens = tokenizer.encode(" i eat cake
print(tokens)

print(tokenizer.decode(tokens))

 0.4s

(249, 2425, 5409, 239]
1 eat cake.
(249, 2425, 5409, 239]
1 eat cake.

eat cake ")

(Example using
GPT's tokenizer,
which does not
include spaces in
the token)

Variants: no pre-tokenization

® |n the variant we proposed, we start by splitting into words
® This guarantees that each token will be no longer than one wora

® However, this does not work so well for character-based languages.
Why?

Variants: no pre-tokenization

® |nstead, we could not pre-tokenize, and treat the entire document or
sentence as a single list of tokens

® Allows for tokens to span multiple words/characters

® Sometimes called SentencePiece tokenization* (Kudo, 2018)

* (not to be confused with the

SentencePiece library, which Paper: https:/arxiv.org/abs/1808.06226
is an implementation of many Library: https://github.com/gooqgle/sentencepiece

kinds of tokenization)

Original (w/ pre-tokenization) Updated (w/out pre-tokenization)
Required: Required:
® Documents D ® Documents D

® Desired vocabulary size IV (greater than chars in D) e Desired vocabulary size N (greater than chars in D)

Algorithm: Algorithm:

- Pre-tokenize D by splitting into words

| | | + Do not pre-tokenize D
(split before whitespace/punctuation) - |
e Initialize V as the set of characters in D

® |nitialize V as the set of characters in D , _
® (~AN\/art 7) ntA A lict Af tAlane (charactare)

https://arxiv.org/abs/1808.06226
https://github.com/google/sentencepiece

Variants: no pre-tokenization

® Allows sequences of words/characters to become tokens

SentencePiece paper example in Japanese:
https://arxiv.org/pdf/1808.06226.pdf

e Rawtext: [Z AIZHIXTHF, | (Hello world.)
e Tokenized: [Z AIZH X [THFR] []

Jurassic-1 model example in English:
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6 jurassic tech paper.pdf

Q: What is the most successful film to date?
A: The most successful film to date is "The Lord of the Rings: The Fellowship of the Ring".

Lord of the Rings %8.47
Matrix %7.65
Avengers %9.86

Uan King %5.73

https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://arxiv.org/pdf/1808.06226.pdf

Variants: byte-based

® Originally, we presented BPE as dealing with characters as the smallest unit
® However, there are many characters - especially if you want to support:
® character-based languages (e.g., Chinese has >100k characters!)

® non-alphanumeric characters like emojis (Unicode 15 has ~150k

characters!) *Only 256 bytes!
® |nstead, can initialize tokens as set of bytes! (e.g., with UTF-8%) Each Unicode
Original (w/ characters) Modified (w/ bytes) char is 1-4 bytes
Required: Required:
e Documents D e Documents D
e Desired vocabulary size IN (greater than chars in D) e Desired vocabulary size IV (greater than chars in D)
Algorithm: Algorithm:
e Pre-tokenize D by splitting into words (split before e Pre-tokenize D by splitting into words (split before
whitespace/punctuation) whitespace/punctuation)
- Initialize V as the set of characters in D + Initialize V as the set of bytes in D
- Convert D into a list of tokens (characters) + Convert D into a list of tokens (bytes)

o WhilelV]< N o WhilelV]< N

Variants: byte-based

While character-based GPT tokenizer The Byte-based GPT-2 tokenizer
fails on emojis and Japanese... succeeds!

gpt_tokenizer = AutoTokenizer.from_pretrained gpt2_tokenizer = AutoTokenizer.from pretrained("gpt2")
tokens = gpt_tokenizer.encode('@®") tokens = gpt2_tokenizer.encode('@')

print|(tokens) print(tokens)

print(gpt_tokenizer.decode(tokens)) print(gpt2_tokenizer.decode(tokens))

tokens = gpt_tokenizer.encode('CAJCHEE") tokens = gpt2_tokenizer.encode('CAlCH(E")
print(tokens) print(tokens)

print(gpt_tokenizer.decode(tokens)) print(gpt2_tokenizer.decode(tokens))
0.7s v 0.bs

0] 147249, 224]

<unk> A

0, @, 0, 0, 0] 146036, 22174, 28618, 2515, 94, 31676}
<unk><unk><unk><unk><unk> B

Variants: VWordPiece objective

® To merge, we selected the bigram with highest
frequency p(Uz’, Uj)
® This is the same as bigram with highest probability!

Modified (Word Piece)

® |nstead, we could choose the bigram which woula
maximize the likelihood of the data after the
merge is made (also called WordPiece!)

+ For the bigram that would

Original (BPE) maximize likelihood of the training
data once the change is made i Y;
- For the most frequent bigram (breaking ties arbitrarily)
vi; V5 (breaking ties arbitrarily) (Same as bigram which maximizes
(Sam as bigram which p(vi, v;)

maximizes - P(Vi; ;)) p(vi)p(v;j))

Variants: VWordPiece objective
® BPE: the bigram with highest frequency/highest probability ~ P(vi, ;)

® \WordPiece: bigram which maximizes the likelihood of the p(vi, ;)

data after the merge is made p(vi)p(v;)

® Maximizes the probability of the bigram, normalized by the
orobability of the unigrams

Variants: VWordPiece encoding

At inference time, instead of applying the merge rules in order, tokens are
selected left-to-right greedily:

Encoding algorithm

Given string S and (unordered) vocab V,

o Initialize list of tokens 1 =]

e While len(s) > 0.
® Find longest token ti that matches the beginning of S
o letl =T+ [t

® Pop corresponding vocab Vi off of front of S
® Return

Variants: unigram objective

® BPE starts with a small vocabulary (characters) and builds up until the
desired vocabulary size N

® The Unigram tokenization algorithm starts with a large vocabulary (all
sub-word substrings) and throws away tokens until we reach size N

Examples of LLMs and their tokenizers

Model/Tokenizer Objective Spaces part of token? Pre-tokenization Smallest unit

GPT Character-level

GPT-2/3/4, ChatGPT,

Llama(2), Falcon, ... BPE Yes Yes Byte-level

No. “SentencePiece” -

Jurassic BPE Yes treat whitespace like Byte-level
char
Bert, DistilBert,
Electra WordPiece No Yes Character-level

No. “SentencePiece” -
Unigram Yes treat whitespace like Character-level
char”

TS5, ALBERT, XLNet,
Marian

“*For non-English languages

Language modeling with neural networks

Inputs/Outputs

® Input: sequences of words (or tokens)

® Output: probability distribution over the next word (token)
p(x|START) p(x|START I)p(z|---went) p(z|---to) p(z|---the) p(x|---park) p(x|START I went to the park.)

The 3 think 11% to 35% the 29%]| |bathroo 3% and 14% I 21%
When 2.5%|| was 5% back 8% a 9% | | doctor 2% with 9 It 6
They 2% || went 2% into 5% see 5% | |hospita 2% , 8% The 3%

am 1% [|through 4% my 3% || store 1.5% to 7% || There 3%
I 1% will 1% out 3% bed 2%
like 0.5% on 2% || school 1% park 0.5% : 6% | | STOP 1%
Banana0.1% e %0

Neural Network

Neural language models

How do neural networks encode text with various lengths?

® Don't neural networks need a fixed-size vector as input? And isn't text
variable length?

Sliding window
Don’t neural networks need a fixed-size vector as input? And isn't text
variable length?
Idea 1: Sliding window of size N

® Cannot look more than N words back

® Basically neural approximation of an N-aram model
Y PP J p(z|the park.)

p(z|I went to)

\

p(x|START I went) Neural Network

Neural Network

Recurrent neural networks
Idea 2: Recurrent Neural Networks (RNNs)

Essential components:

® One network is applied recursively to the sequence

® |nputs: previous hidden state -1, observation

® Outputs: next hidden state /¢, (optionally) output ¥t

® Memory about history is passed through hidden states

p(x|START) p(x|START I) - p(x|START I went to the park.)

20000000

Example RNN

Embedding

p(x|START I)

Variables:

Zt: input (embedding) vector
Yt: output vector (logits)

Pt: probability over tokens
hi—1: previous hidden vector
ht: next hidden vector

Oh: activation function for
hidden state

9y: output activation function

Equations:
hy := Oh(WhCIZ‘t + Uphi—1 + bh)

Yt - — O'y(Wyht -+ by)
eXp(yti)
Z?:j eXp(ytj)

Pt; —

Example RNN

What are trainable parameters@?

yY = P(z®|the students opened their)

books
l laptops

output distribution
gt = softmax (Uh(” + b2) e RV - _I_ -

< >

d A 200

U
h(®__ hl) h(2) h(h(4)
hidden states ® @
B _ (Whh(t‘” W 4 bl) @ W, g e W, . Wy, . Wy, g
O O

h(9) is the initial hidden state O O

word embeddings
elt) — pqpt)

e(1) e(3)

oooo]g{ooco]

&

EL
—{oooo]g[oooo]g

students
7(2)

=

the
(1)

words / one-hot vectors

a}'(t) - Rlvl m(3)

Note: this input sequence could be much
longer now!

opened

®
~~
—
e

oooo]g{oooo

'l

their

(4)

Recurrent neural networks

® How can information from time an earlier state (e.g., time 0) pass to a
later state (time t?)

® Through the hidden states!

® Fven though they are continuous vectors, can represent very rich
information (up to the entire history from the beginning)

Pwi,wy, ...ow,) = P(w)) X P(wy | w)) X P(ws | wi,wy) X ..o XP(w, | Wi, Wsy ccoow, 1)

No Markov
= P(w; | hy) X P(w, | h)) X P(ws | hy) X ... x P(w, | h,_)) assumption here!
p(z|START) p(z|START I) : p(z|START I went to the park.)

20000000

Training procedure

E.g., it you wanted to train on "<START>| went to the park.<STOP>"...

1. Input/Output Pairs

X (input)
START
START |

START | went
START | went to
START | went to the
START | went to the park
START | went to the park.

Training procedure

I InpuvyQutput Pairs 2. Run model on (batch of)@%§ from
data D to get probability
XS(;%“T") distributions/# (running softmax at
START | end to ensure valid probability
START | went CoL :
START | went to distribution)

START | went to the

START | went to the park
START | went to the park.

Training procedure

2. Run model on (batch of) 2's from

data D to get probability
distributionsi#

3. Calculate loss compared to true

. Or—\OO:

0 Y's (Cross Entropy Loss)

LCE Z Yi log

Yt

oc:o»—x:

Training procedure r1.x(y Zyz log(#

p(STOP|START)| -01

-
»(The|START) | .03 0 }ctual observed word) 3. Calculate loss compared to true
p(IIST@?E 6(1)1 ”y (1) Y's (Cross Entropy Loss)

p(apple|START) _.062_

Lcee(y1,y1) = —0xlog(.01) — 0 xlog(.03) — 1 x —log(.1) — --- — 0 * log(.002)
A —log(.1) = —log(p(I|START))
J
:z:|START

3-8 W o000

Training procedure - gradient descent step

Get training x-y pairs from batch
. Run model to get probability distributions over ¥

1.

2

3. Calculate loss compared to true ¥
4. Backpropagate to get the gradient
5.

Take a step of gradient descent 0" =0 — s g_g(@(i))

p(x | START

a-u-u-0-0B-0-0-

Bidirectional RN Ns

This contextual representation of “terribly”

has both left and right context!

/

Q| (0 0 0) (@

O O @) O O O

O O @) @ g g
Concatenated O @) @ @) . h
hidden states O O ® O O O ht _f(ht—l’ Xt) E R

O @) ®) Q O O

O O @) O O O

O O O O O @)

W\ TN K 1 K h\

0 0 o o o o 3 Y
Backward RNN - oL -’ -’ Q| O ht=f1(ht_1,Xt),t= 1,2,...71
ackward RN O o) 0 J o O O
O (@) O O O O

I e I < i P < «—

el / |e|l/ |® / | / (@ / |@| / — — _
Forward RNN o/ |o|/ |o|/ |eo|/ |o|/ |eo|/ h,=fH(h,,x),t=nn-1,..1

‘ / . / . / . / ’ / . /

@ ®| @) Q| Q| ®| Y >

/ / / 7/ // Y h.=1|h.h RZh
/ ;‘E / _1/7 / T r | 1 l‘] =
the movie was terribly exciting /

Multi-layer RNNs

o] (e 0 0 o] (e
RNN layer 3 : : : > : > : > : :
O O O O @) O
" —’ et —’ o —
@) O :
RNN layer 2 0 o 1@ 0O O O
e @ @& & & @ Thehidden states from RNN layer i
o (e (o0 (e (e (e are the inputs to RNN layer i + 1
RNN layer 1 : s : : 2 : . : > :
the movie was terribly exciting /

e In practice, using 2 to 4 layers is common (usually better than 1 layer)
e Transformer networks can be up to 24 layers with lots of skip-connections

RNN encoder-decoder for machine translation

Amo el aprendizaje <end>
oftm softm softm softmax

<start> AMo el aprendizaje

n Decoder
Encoder

-+4-441

<start> love learning <end>

https://www.baeldung.com/cs/nlp-encoder-decoder-models

RNNSs - vanishing gradient problem

What word is likely to come next for this sequence?

Anne said, "Hi! My name is

RNNSs - vanishing gradient problem

What word is likely to come next for this sequence?

Anne said, “"Hi! My name is
p(z|START Anne said, “Hi! My name is)

RN RNN TS RNN SN RNN TSN /RNN
A A

® Need relevant information to flow across many time steps

® \When we backpropagate, we want to allow the relevant information to
flow

RNNSs - vanishing gradient problem

p(z|START Anne said, “Hil My name is) =3¢

5 —
ho»m—»hl» RNN gil2lms RNN BREES RNN TS pnn NN gy N Y
*

. Backprop steps
. = 0,W, @ay(Wyhs + by)

oL

0y

O, _5ht—|—1Uh @O‘h tht—l—l —I—Uhht—l—bh oo _5h8Uh @O’h Wh.CCg—I—Uhh7—|—bh)
However, when we backprop, it T any of are close to zero,
involves multiplying a chain of the whole gradient goes to zero
computations from time t7to time t1... (vanishes!)

The vanishing gradient problem

RNNSs - vanishing gradient problem

T / Sigmoid Derivative RelLU Derivative
5ht — 5ht—|—1Uh @O‘h(Wh.CE‘t+1 + Up hy —I—bh) 025 - 1.0 -
It any of are close to zero, the - .
whole gradient goes to zero (vanishes!) 0.05 - 02
The vanishing gradient problem Y T \ /' T

Danger Zone

J— L
This happens often for many activation nhDerivative & i GELU Derivative

functions... the gradient is close to zero Lo- n . N
when outputs get very large or small :: -

® The more time steps back, the more 04- os-
chances for a vanishing gradient 02 j & . L)

SO‘UtiOﬂI LSTMS! '_.10 5 0 5 10 10 -5 0 5 10

LSTMs

Idea 3: Long short-term
memory network

Essential components:

® |tis arecurrent neural
network (RNN)

® Has modules to learn when
to "“remember”/“torget”
iInformation

® Allows gradients to flow
more easily

fo = og(Wixs + Ugphi 1 + by)

it = 0g(Wixy + Ushy—1 + b;)
(ot + Ushy_1 bo)

¢t = oc(Wexy +Uchi—1 + be)

Ct = Jt © Cci—1 + 14 © ¢

hy = 0y © op(ct)

z; € R%: input vector to the LSTM unit

fr € (0, 1)h . forget gate’s activation vector

i € (0,1)": input/update gate’s activation vector
o: € (0, 1)h . output gate’s activation vector

he € (—1,1)": hidden state vector also known as output
vector of the LSTM unit

¢ € (—1, 1)h: cell input activation vector

c; € R"™: cell state vector

LSTM architecture

LSTM architecture

fo = og(Wyzy +Ugph 1 + by)
it = 0g(Wixy + Uihyi—1 + ;)

Cell state (long term 0y = 0g(Woxy + Ushi—1 + bo)
memory): allows information . o Gt = 0c(Weay + Uchy—1 + be)
to flow with only small, linear ——— = O 0 O 6
interactions (good for hy = 0 ® op(ct)
gradients!)
® "Gates” optionaHy et z; € RY: input vector to the LSTM unit
information through —®_ fr € (0, Z-)h: forget gate’s activation vec
®@ 1 -retain information ? i € (0,1)": input/update gate’s activaf
(”remember”) CII 0, € (0,1)": output gate’s activation ve:
e (- forgetinformation o — > htvicioj’olf)ﬂ;eh;dsie&i:f vector also
(“forget”) et Operation Tnster | Concatenate Copy

& € (—1,1)": cell input activation vect

c; € R": cell state vector

LSTM architecture

fo = 0g(Wyxy + Ushy—1 + by)
it = 0g(Wizy + Uihi—1 + b;)
Input Gate Layer: Decide 01 = 0g(Woxs + Uohy—1 + bo)
¢t = oc(Wexy + Uchy—1 + be)
ct = Jt ©ci—1+1 ©C¢
he = oy © op(ct)

what information to
"torget”

z; € R%: input vector to the LSTM unit

f, € (0,1)": forget gate’s activation vector

i € (0,1)": input/update gate’s activation vector

0, € (0,1)": output gate’s activation vector

h: € (—1,1)": hidden state vector also known as output
vector of the LSTM unit

& € (—1,1)": cell input activation vector

c; € R"™: cell state vector

LSTM architecture

fo = og(Wyay +Ugpht 1 + by)
it = 0g(Wixy + Ushy—1 + b;)
Candidate state values: ot = 0g(Wort + Ushi—1 + bo)
¢t = oc(Wexy +Uchi—1 + bc)
ct = Jt ©ci—1 + 1t © ¢
he = or © op(ct)

Extract candidate
information to put into the

cell vector

z; € R%: input vector to the LSTM unit

fr € (0,)h . forget gate’s activation vector

i € (0,1)": input/update gate’s activation vector

0, € (0,1)": output gate’s activation vector

h: € (—1,1)": hidden state vector also known as output
vector of the LSTM unit

& € (—1,1)": cell input activation vector

c; € R"™: cell state vector

LSTM architecture

Update cell: “Forget” the
information we decided to
forget and update with
new candidate information

f ftis
® High: we
“remember”

more previous
info

® [ow: we "forget”
more info

Y
C

Ci—1
ftT ’l'tr’v@
C,

fo = og(Wias +Ughi 1 + by)
it = 0g(Wizy + Uihi—1 + b;)
Or — O'g(WO.CCt -+ Uoht_l -+ bo) H: 1t 1S

Ct = O-C(cht + Ucht—l + bc) o ngh we

ct = ft ©ci—1+ 1 O ¢ add more

hy = 0 © op(c) new info

r; € R:
ft € (0,
it € (0,1
o; € (0,1
hy € (—1

® [ow: we add

input vector to the LSTM unit less new info

1)": forget gate’s activation vector

)": input/update gate’s activation vector

)": output gate’s activation vector

,1)": hidden state vector also known as output

vector of the LSTM unit

& € (—1,1)": cell input activation vector

c; € R"™: cell state vector

LSTM architecture

ft — Oy Wfﬂft —|—Ufht 1 —|—bf)

(
it:Ug(W$t+Uht 1‘|—b)
Output/Short-term Memory o

, | o = 0g(Woxy + Uohi—1 + b,)
(as in RNN): Pass on ¢t = 0o(Wewy + Ushi—1 + be)
Pass information onto the next different = F, ey +iy @ G
state/for use in output (e.qg., information hy = 0; ® oy (cr)
probabilities) than in the

h, long-term

z; € R%: input vector to the LSTM unit
memaory vector

fr € (0,)h . forget gate’s activation vector

i € (0,1)": input/update gate’s activation vector

0, € (0,1)": output gate’s activation vector

h: € (—1,1)": hidden state vector also known as output
vector of the LSTM unit

& € (—1,1)": cell input activation vector

c; € R"™: cell state vector

LSTMs (summary)

Pros:
® \Works for arbitrary sequence lengths (as RNNs)

® Address the vanishing gradient problems via long- and short-term
memory units with gates

Cons:

® Calculations are sequential - computation at time t depends entirely
on the calculations done at time t-1

® As a result, hard to parallelize and train

Enter transformers... (next time)

