COMP 3361 Natural Language Processing

Lecture 8: Neural language models:
Tokenization

Spring 2025

Announcements

® Assignment 1 is due on Mar 4!
® \Vill provide a short coding tutorial next Friday
® Book a TA slot via the link on the course page

® Also you can always ask questions on Slack

Latest Al news

® Try Grok 3 for free (access w/o VPN in HK): https://x.com/i/grok
® OpenAl roadmap update for GPT-4.5 and GPT-5 (coming in May)

® Anthropic Claude 3.7 Sonnet is out, also QwQ-Max-Preview

Anthropic .+ @AnthropicAI - 6h X - $;- Qwen ¢ @Alibaba Qwen - 3h Xl e
Introducing Claude 3.7 Sonnet: our most intelligent model to date. It's a & <think>...</think> QWQ-Max-Preview
hybrid reasoning model, producing near-instant responses or extended,
step-by-step thinking. Qwen Chat: chat.qwen.ai

Blog: qwenim.github.io/blog/qwq-max-p...
One model, two ways to think.

= Today we release "Thinking (QwQ)" in Qwen Chat, backed by our QwQ-
We’re also releasing an agentic coding tool: Claude Code. Max-Preview, which is a reasoning model based on Qwen2.5-Max. This
model is still for preview. It is highly
Show more

Comprehensive problem conclusion and analysis

Conclusion

Through multiple analytical frameworks, we've demonstrated that switching doors
increases your winning probability from 1/3 to 2/3. This counterintuitive result highlights
how conditional probability works and shows that the host's behavior provides valuable
information that a strategic player can leverage.

Good evening, QwQ

X’—

Create an interactive simulator that helps me understand the Monty Hall &
problem.

aude 3.7 Sonnet

Q 845 1 3.4K Q 13K i 1.5M n & Q 82 1 375 QO 1.3K il 140K

https://x.com/i/grok
https://x.com/sama/status/1889755723078443244
https://x.com/AnthropicAI/status/1894092430560965029
https://x.com/Alibaba_Qwen/status/1894130603513319842

Latest Al news

® Helix: A Vision-Language-Action Model for Generalist Humanoid

Control

Figure . X - |
@ @Figure robot 11X Xl -

@1x tech —

Meet Helix, our in-house Al that reasons like a human
Introducing NEO Gamma.

Robotics won't get to the home without a step change in capabilities Another step closer to home.

Our robots can now handle virtually any household item:

3:00 AM - Feb 22, 2025 - 7.4M Views
10111 PM - Feb 20, 2025 - 1.8M Views

Q 840 2 3K Q 10K A 25K T Q 2.2k T18.3K Q 29k [] 79K A

https://x.com/Figure_robot/status/1892577871366939087
https://x.com/Figure_robot/status/1892577871366939087

Neural language models: tokenization

Neural language models: inputs/outputs

® Input: sequences of words (or tokens)

® Output: probability distribution over the next word (token)
p(x|START) p(x|START I)p(z|---went) p(z|---to) p(z|---the) p(x|---park) p(x|START I went to the park.)

The 3 think 11% to 35% the 29%]| |bathroo 3% and 14% I 21%
When 2.5%|| was 5% back 8% a 9% | | doctor 2% with 9 It 6
They 2% || went 2% into 5% see 5% | |hospita 2% , 8% The 3%

am 1% [|through 4% my 3% || store 1.5% to 7% || There 3%
I 1% will 1% out 3% bed 2%
like 0.5% on 2% || school 1% park 0.5% : 6% | | STOP 1%
Banana0.1% e %0

Neural Network

Tokenization to input vectors

p(z|START) p(x|START I)p(z|---went) p(z|---to) p(z|---the) p(x|---park) p(x|START I went to the park.)

Neural Network

T

1837 17453 14726 19379 12758 2006 2293
visually stunning rum FZinatior on love SFP]
Tokenization
. . T :
[okenization:
[
visually stunning rumw FEinatior on

Tokenize

“a visually stunning rumination on love”

ChatGPT tokenization example

Tokens Characters

Call me Ishmael. Some years ago—never mind how long precisely—having 239 1109

little or no money in my purse, and nothing particular to interest me on
[7368, 757, 57704, 1764, 301, 13, 4427, 1667, 4227, 2345, 37593, 4059,

1268, 1317, 24559, 2345, 69666, 2697, 477, 912, 3300, 304, 856, 53101,
11, 323, 4400, 4040, 311, 2802, 757, 389, 31284, 11, 358, 3463, 358,
the circulation. Whenever I find myself growing grim about the mouth; 1053, 30503, 922, 264, 2697, 323, 1518, 279, 30125, 727, 961, 315, 279,
whenever it is a damp, drizzly November in my soul; whenever I find LR Rl nrOl iy ety Bliaal iy WR0y S dRAREh naisy 2l Gilns
268, 323, 58499, 279, 35855, 13, 43633, 358, 1505, 7182, 7982, 44517,

922, 279, 11013, 26, 15716, 433, 374, 264, 41369, 11, 1377, 73825, 6841,
the rear of every funeral I meet; and especially whenever my hypos get 304, 856, 13836, 26, 15716, 358, 1505, 7182, 4457, 3935, 6751, 7251, 985,

such an upper hand of me, that it requires a strong moral principle to 1603, 78766, 83273, 11, 323, 12967, 709, 279, 14981, 315, 1475, 32079,
358, 3449, 26, 323, 5423, 15716, 856, 6409, 981, 636, 1778, 459, 8582,

1450, 315, 757, 11, 430, 433, 7612, 264, 3831, 16033, 17966, 311, 5471,
knocking people’s hats off-then, I account it high time tozz get to sea 757, 505, 36192, 36567, 1139, 279, 8761, 11, 323, 1749, 2740, 50244,

as soon as I can. This is my substitute for pistol and ball. With a 1274, 753, 45526, 1022, 2345, 3473, 11, 358, 2759, 433, 1579, 892, 311,
10616, 636, 311, 9581, 439, 5246, 439, 358, 649, 13, 1115, 374, 856,

28779, 369, 40536, 323, 5041, 13, 3161, 264, 41903, 67784, 356, 4428,
3872, 5678, 5304, 813, 20827, 26, 358, 30666, 1935, 311, 279, 8448, 13,

shore, I thought I would sail about a little and see the watery part of
the world. It is a way I have of driving off the spleen and regulating

myself involuntarily pausing before coffin warehouses, and bringing up

prevent me from deliberately stepping into the street, and methodically

philosophical flourish Cato throws himself upon his sword; I quietly
take to the ship. There is nothing surprising in this. If they but knew

it, almost all men 1n their degree, some time or other, cherish very 2684, 374, 4400, 15206, 304, 420, 13, 1442, 814, 719, 7020, 433, 11,
nearly the same feelings towards the ocean with me. 4661, 682, 3026, 304, 872, 8547, 11, 1063, 892, 477, 1023, 11, 87785,
o T oo, 1890, 16024, 7119, 279, 18435, 449, 757, 13]

(TEXT

https://platform.openai.com/tokenizer

Vocabulary: word-level

® Forthe n-gram model, our vocabulary V was comprised of all of the words in a
language
® Some problems with this:

e |V|can be quite large - ~470,000 words Webster's English Dictionary (3rd
edition)

¢ Language is changing all of the time - 690 words were added to Merriam
Webster's in September 2023 ("rizz", "goated”, “mid")

® Long tail of infrequent words. Many words just occur a few times
® Some words may not appear in a training set of documents

" 11 1 11 11

® No modeled relationship between words - e.g., “run”, “ran”, “runs”, “runner”
are all separate entries despite being linked in meaning

Character-level!?

What about representing text with characters?
oV ={a,bc, ... 2}

® (Maybe add capital letters, punctuation, spaces, ...)
® Pros:

® Small vocabulary size (1V| = 26 for English)

® Complete coverage (unseen words are represented by letters)

® Cons:

® Encoding becomes very long - # chars instead ot # words

® Poor inductive bias for learning

Word Character Subword tokenization!

How can we combine the high coverage of character-level
representation with the efficiency of word-level representation?

Subword tokenization! (e.g., Byte-Pair Encoding)
® Start with character-level representations

® Build up representations from there

Original BPE Paper (Sennrich et al., 2016)
https://arxiv.org/abs/1508.07209

https://arxiv.org/abs/1508.07909

Byte-pair encoding: ChatGPT example

Tokens Characters

Call me Ishmael. Some years ago—never mind how long precisely—having 239 1109

little or no money in my purse, and nothing particular to interest me on
[7368, 757, 57704, 1764, 301, 13, 4427, 1667, 4227, 2345, 37593, 4059,

1268, 1317, 24559, 2345, 69666, 2697, 477, 912, 3300, 304, 856, 53101,
11, 323, 4400, 4040, 311, 2802, 757, 389, 31284, 11, 358, 3463, 358,
the circulation. Whenever I find myself growing grim about the mouth; 1053, 30503, 922, 264, 2697, 323, 1518, 279, 30125, 727, 961, 315, 279,
whenever it is a damp, drizzly November in my soul; whenever I find LR Rl nrOl iy ety Bliaal iy WR0y S dRAREh naisy 2l Gilns
268, 323, 58499, 279, 35855, 13, 43633, 358, 1505, 7182, 7982, 44517,

922, 279, 11013, 26, 15716, 433, 374, 264, 41369, 11, 1377, 73825, 6841,
the rear of every funeral I meet; and especially whenever my hypos get 304, 856, 13836, 26, 15716, 358, 1505, 7182, 4457, 3935, 6751, 7251, 985,

such an upper hand of me, that it requires a strong moral principle to 1603, 78766, 83273, 11, 323, 12967, 709, 279, 14981, 315, 1475, 32079,
358, 3449, 26, 323, 5423, 15716, 856, 6409, 981, 636, 1778, 459, 8582,

1450, 315, 757, 11, 430, 433, 7612, 264, 3831, 16033, 17966, 311, 5471,
knocking people’s hats off-then, I account it high time tozz get to sea 757, 505, 36192, 36567, 1139, 279, 8761, 11, 323, 1749, 2740, 50244,

as soon as I can. This is my substitute for pistol and ball. With a 1274, 753, 45526, 1022, 2345, 3473, 11, 358, 2759, 433, 1579, 892, 311,
10616, 636, 311, 9581, 439, 5246, 439, 358, 649, 13, 1115, 374, 856,

28779, 369, 40536, 323, 5041, 13, 3161, 264, 41903, 67784, 356, 4428,
3872, 5678, 5304, 813, 20827, 26, 358, 30666, 1935, 311, 279, 8448, 13,
it, almost all men 1n their degree, some time or other, cherish very 2684, 374, 4400, 15206, 304, 420, 13, 1442, 814, 719, 7020, 433, 11,
4661, 682, 3026, 304, 872, 8547, 11, 1063, 892, 477, 1023, 11, 87785,

tonn meme ~TAl 1800, 16024, 7119, 279, 18435, 449, 757, 13]
TOKEN IDS

shore, I thought I would sail about a little and see the watery part of
the world. It is a way I have of driving off the spleen and regulating

myself involuntarily pausing before coffin warehouses, and bringing up
prevent me from deliberately stepping into the street, and methodically

philosophical flourish Cato throws himself upon his sword; I quietly
take to the ship. There is nothing surprising in this. If they but knew

nearly the same feelings towards the ocean with me.

(TEXT

https://platform.openai.com/tokenizer

Byte-pair encoding: usage

® Basically state of the art in tokenization

® Used in all modern left-to-right large language models (LLMs),
including ChatGPT

Model/Tokenizer Vocabulary Size

GPT-3.5/GPT-4/ChatGPT

GPT-2/GPT-3

Llama2

Falcon

Byte-pair encoding (BPE): algorithm

Required:

e Documents D

® Desired vocabulary size [N (greater than characters in D)
Algorithm:

e Pre-tokenize D by splitting into words (split before whitespace/punctuation)

e Initialize V as the set of characters in D

e Convert D into a list of tokens (characters)

e While!V]< N
@ et V= |V“|'1

e Get counts of all bigrams in D

® Forthe most frequent bigram Uiy Uj (breaking ties arbitrarily)

o | ot Un 1= concat(v;, v;)

e Change all instances in D of Yi» Vjto Un and add Unto V

Byte-pair encoding: example

Required:
. Docurmente) ——— D = {“i hug pugs”, “hugging pugs is fun”, “i make puns” }

Algorithm: > D — {cciw, « hug”, « pugs”, “hugging”, « pugs”,

e Pre-tokenize D by splitting into words (split before

whitespace/punctuation) ¢ (39

igq” | “ fun” 8 “ make” | 7 pUHS” }
® |nitialize V as the set of characters in D

o Conver’cDintoaIis’toftokens(charac’ters) > V __ {a 9 cav cea ‘f’ cg7 chv civ ck7 cmv
o While|V|< N oy By by 55) Ay By ,
. S N A 7} ‘V‘ L 13
OLetn°:|V‘+1 n, p, s, urj, —

® Get counts of all bigrams inD R T T T T I T A I
D:{_l],[] h; u, g],[, P, U, &, S]?

VA4

e For the most frequent bigram Yi» V3 (breaking

ties arbitrarily) :‘h’, ‘U_’, ‘g’, ‘g’, ‘i’, ‘n, g’] ,[, P, U, g, 687],

o | ot Un = concat(v;, v;)

e Change all instances in D of Yi» Vjto Un _
and add /Un_tov -C 77 Cm77 Ca77 Ck77 667] 7 [C 77 Cp77 Cu?7 Cn77 487]}

Example inspired by: https://huggingface.co/docs/transformers/tokenizer summary

https://huggingface.co/docs/transformers/tokenizer_summary

Byte-pair encoding: example

Required: V={1:°7,2:%",3:%,4:14,5:2,6:h",7:%9,
® Documents D % (o) () () () ()
: :'m’, 10 :'n’, 11 : 12 :°s’,13 : "u
e Desired vocabulary size N (greater than chars in D) 3 79 ’ 0 7 P 7 : }
Algorithm:
e Pre-tokenize D by splitting into words (split before /mp/ementa'[‘ion agide: \We norma//y
whitespace/punctuation) : : : :
store ‘D with the token indices instead

e |nitialize V as the set of characters in D

e Convert D into a list of tokens (characters) of the text itself!
e While!VI< N: \

o Lot 70i= V] D = {[7],[1,6,13,5],[1,11,13,5,12],

® Get counts of all bigrams in D :

® For the most frequent bigram breaking -6’ 13’ 57 57 77 107 5]) [17 117 137 57 12] ? [17 77 12])
ties arbitrarily) 1,4,13,10],(7],[1,9,2,8,3],[1,11,13,10, 12|}

o | ot Un := concat(v;,v;)

vi,vj(

e Change all instances in D of Yi» Vjto Un For /eglblhty of the examp/e/ we will show

and add Unto V the text corresponding to each token

Required:

e Documents D

Byte-pair encoding: example

D — { :617] , [C 77 61177 6u77 ng] ’ [C 7, 6p77 (u77 A

® Desired vocabulary size N (greater than chars in D) ‘h’, ‘u’, o’ fo’ 1

Algorithm:

® Pre-tokenize D by splitting into words (split before
whitespace/punctuation)

N A S T A
,‘m’, ‘a’, 'k

® |nitialize V as the set of characters in D :
| | Bigram Count
® Convert D into a list of tokens (Characters) m A

e While V< N
OLetn::|V‘+1

e Get counts of all bigrams in D
Ui, Uy

3
3
2

o | ot Un = concat(v;, v;)

e Change all instances in D of Vi» Vjto Un

and add Unto V

V14 := concat(‘u’,

6]7[‘ 7’ Cp

g’) = ‘ug

Byte-pair encoding: example

Required:

e Documents D

e Desired vocabulary size N (greater than chars in D)
Algorithm:

® Pre-tokenize D by splitting into words (split before
whitespace/punctuation)

e |nitialize V as the set of characters in D

e Convert D into a list of tokens (characters)
e WhilelVI< N
o [t TV -= |V‘+1

e Get counts of all bigrams in D

® For the most frequent bigram Yi» V3 (breaking
ties arbitrarily)
o | ot Un = concat(v;, v;)
D of Vi Ujio Up

UntoV

D= {

|
—~—

:Ci?] , [C 77 Ch?) Cu77 Cg7] 7 [C 77 Cp77 6u7
| |

V14 := concat(‘u’,

:417] , [C 77 Ch?) Cug?] , [C 77 Cp77 Cug7, 687] 7
:¢h7’ Cug77 Cg77 Ci?) Cn77 Cg7] ’ [’
:C 77 Ci? ‘S’] 7 [C 77 Cf?) Cu77 Cn7] ’ [Ci?] 7

¢)«

e Y L) L)) L)
V_ 7a7e7f7g7

)
, m?) Ca}77 Ck77 667] 7 [C 77 Cp77 Cu77 Cn7, ‘S’]}
Ch?) 617’ 6k7’ Cm7’

6877 Cu77 Cug7}, ‘V‘ — 14

Can) e

L, P,

Byte-pair encoding: example
Required: D={[1],["", ‘W, ‘ug’], ", ‘p’, ‘ug’, ‘s’,
e Documents D ' :

e Desired vocabulary size N (greater than chars in D)

Algorithm:

® Pre-tokenize D by splitting into words (split before
whitespace/punctuation)

e |nitialize V as the set of characters in D

e Convert D into a list of tokens (characters)
e WhileV|< N:
o et = |V‘_|_1

e Get counts of all bigrams in D
Ui, Uy

o | ot Un := concat(v;,v;)

e Change all instances in D of Vi» Vjto Un
and add Un to V

Byte-pair encoding: example
D = {

Required:

e Documents D

e Desired vocabulary size N (greater than chars in D)

Algorithm:

e Pre-tokenize D by splitting into words (split before
whitespace/punctuation)

e Initialize V as the set of characters in D

e ConvertD into a list of tokens (characters)

e While V< N
OLetn::|V‘+1

e Get counts of all bigrams in D

® For the most frequent bigram Yi» V3 (breaking

ties arbitrarily)
o | ot Un = concat(v;, v;)

e Change all instances in D of Vi» Vjto Un
and add Un to V

:617] 7 [C 7’ Ch7’ Cug7] 7 [C 7’ Cp77 Cug77 ‘S’] ’
:Ch?) Cug77 6g7, Ci?) Cn77 Cg7] 7 [C 7’ Cp77 Cug77 687]7
¢ 7’ Ci?) ‘S,] ’ [C 7’ Cf?) 6u77 Cn7] 7 [617] ,

l V15 := concat(‘ ’,

{ :617] ’ [C 7’ ﬁh7’ Cug7] 7 [6 p7’ Cug77 ‘S’] 7

:61,177 Cug77 6g7, Ci?) Cn77 Cg7] 7 [C p77 Cug7, 687] 7
¢ 7’ 6177 ‘S’] ’ [C 7’ Cf?) Cu7’ Cn7] 7 [617] ,
¢ 77 Cm77 Ca77 Ck77 ﬁe7] 7 [C p7’ Cu77 Cn77 687]}

Byte-pair encoding: example

Required: Repeat until V=N
e Documents D
e Desired vocabulary size N (greater than chars in D) D — { -‘i’] , [‘ hug’] 7 [‘ pugs’] ,
Algorithm: :
¢ N BA B SN B ¢ 9
® Pre-tokenize D by splitting into words (split before - hug , &, 1, 11, '8]) [pugs])
whitespace/punctuation Y6l) L A o B 9 (29
e) | C L] [
e Initialize V as the set of characters in D _
Y Y a1, 0T TERRY daaay (o
e Convert D into a list of tokens (characters) -, In, a, k; €] 7[P, uUn., S]}
e WhileVI< N
TLZ:|V‘—|—1 I (T RS RSN A o BERNASNE BES I BETLE RS (N0 RSN SNNS NN R RS
° Let V_{ 7avevf7g7h717k7m7n7p7s7u7

e Get counts of all bigrams in D R o o e o ,
e For the most frequent bigram Yi» V3 (breaking ug, 'p, hug , pug, pugs, ul, hug }7

ties arbitrarily) |V| — 9()
o | ot Un = concat(v;, v;)
e Change all instances in D of Vi» Vjto Un

and add Un to V CHANGES FROM START

Byte-pair encoding: example

NN o ., CHANGES FROM START
D = {[], [yhug] , [* pugs].

Questions to think about: ‘hug’, ‘¢’, ‘i’, ‘n’, ‘2’|, | pugs’|,

® |s every token we made used G L] [
in the corpus? Why or why C 'l e, k) e [T,) Cs7)
not? D = {[7].[20] . [18] .

® How much memory (#tokens) 16,5,7,10,5], [18], (as tokens
have we saved for each 1,7,12],[1,4,19],[7], indices)
document? 1,9,2,8, 3],[15,19, 12|}

e \What would happenifyou V={1:°",2:%",3:%,4:1",5:'¢",6:‘h",7: 1,
kept adding vocabulary until 8:'k’9:'m’,10:'n’, 11 : 'p’, 12 :°s’,13 : ‘u’,
you couldn't anymore? 14 : ‘ug’,15: ¢ p’, 16 : ‘hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’, 20 : * hug’}

Byte-pair encoding: tokenization/encoding

With this vocabulary, can you represent (or, tokenize/encode):

® “apple”?

® No, thereis no’l'in the vocabulary

® "huge”?
* Yes-[16 4] V={1:°7,2:%",3:%,4:4.,5:¢,6: W, 7:49,
¢ " huge"? 8:°k’9:'m’,10:‘n’, 11 : ‘p’,12:°s’,13 : ‘u’,
| 14 : ‘ug’, 15 : * p’, 16 : “hug’, 17 : * pug’, 18 : ° ’
o Ves - (20, 4] ug p ug pug pugs

19 : ‘un’, 20 : * hug’
® “hugest”? 8

® No, thereis no 't' in the vocabulary

® “uUnassumingness”?
® Yes-[19,2,12,12,13,9,7,10,5,10, 3,12, 12]

Byte-pair encoding: tokenization/encoding
V={1:°72:",3:%,4:4.,5:¢,6: W, 7:49,
8:°k’9:'m’,10:‘n’, 11 : ‘p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’,16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’, 20 : ¢ hug’}
® Sometimes, there may be more than one way to represent a word with the
vocabulary...

® E.g.,"hugs”"=[20,12]=[1,16,12]1=[1,6,14,12]=1[1,6,13,5, 13]
® \Which is the best representation? Why?

Byte-pair encoding: tokenization/encoding
V={1:",2:",3:%€,4:4,5:¢,6:h’,7:7,
8:°k’9:'m’,10:'n’, 11 : ‘p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’,16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’, 20 : * hug’}
Encoding algorithm
Given string S and (ordered) vocab V,
® Pretokenize D in same way as before
® Tokenize D into characters

® Perform merge rules in same order as in training until no more merges
may be done

Byte-pair encoding: tokenization/encoding
V={1:",2:",3:%€,4:4,5:¢,6:h’,7:7,
8:°k’9:'m’,10:'n’, 11 : ‘p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’,16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’,20 : ¢ hug’}

Encoding algorithm
Encode(“ hugs”)

Encode(“misshapenness”)

20, 12]

® Pretokenize D in same way as 9, 1,12,12,6, 2,
before 11, 3,10, 10, 3,12, 12]

® Tokenize D into characters

Given string S and (ordered) vocab)V

® Perform merge rules in same order
as in training until no more merges
may be done

Byte-pair encoding: decoding
V={1:7,2:a,3:%,4:1,5:¢,6: W, 7:%9,
8:°k,9:'m’,10:‘n’, 11 : p’,12:°s’,13 : ‘u’,
14 : ‘ug’,15:° p’, 16 : *hug’, 17 : * pug’, 18 : * pugs’,
19 : ‘un’, 20 : © hug’}

DeCOdlng algorlthm Encode(“ hugs”)

20, 12]
Encode(“misshapenness”) = [9,7,12,12,6, 2,
® |nitialize string S 1= ik 11, 3,10, 10, 3, 12, 12]
® Keep popping off tokens from the
front ot 1" and appending the
corresponding string to S

Given list of tokens T':

Decode(|20,12]) = “ hugs”
Decode([9,7,12,12,6,2,11, 3,10, 10, 3,12, 12])

— “misshapenness”

Byte-pair encoding: properties

® Efficientto run (greedy vs. global optimization)
® | ossless compression

® Potentially some shared representations - e.g., the token "hug” could
be used both in “"hug” and "hugging”

Weird properties of tokenizers

® [oken !|=word run run RunRun (6236, 1629, 6588, 6869]

® Spaces are part of token

17

® “run” is a different token than ” run

® Not invariant to case changes rokenos |

® "Run” is a different token than “run”

Weird properties of tokenizers

tokenization ATEROT
® Token !=word EStreamFrame
o Spaces are part Of token NLP SolldGoldMaglkarp
y " - : N . PsyNetMessage
® "run” is a different token than * run don't -
embedreportprint
® Notinvariant to case changes victory Py
® “Run” is a different token than “run” lose oreAndOnline
. : . Co StreamerBot
® Tokenization fits statistics of your data ,
GoldMagikarp
® c.g., while these words are multiple tokens... /v externalToEVA
® These words are all 1 token in GPT-3's tokenizer! TheNitrome
TheNitromeFan
o \WVhy? . .
RandomRedditorWithNo
® Reddit usernames and certain code attributes appearead Y e

enough in the corpus to surface as its own token!

Example from https://www.lesswrong.com/posts/aPeJE8bSo6rAFol gg/solidgoldmagikarp-plus-prompt-generation

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

