COMP 3361 Natural Language Processing

Lecture 6:Word Embeddings (cont’d)

Spring 2025

Latest Al news

#:2+ Junyang Lin & % @JustinLin610 - Feb 16

& oh realy?

% Elon Musk & B @elonmusk - Feb 16

Grok 3 release with live demo on Monday night at 8pm PT.

Smartest Al on Earth.

O 93 94 Q 1.5K i1 251K

>

Distributional hypothesis

Distributional hypothesis: words that occur in similar contexts tend to have similar
meaning
J.R.Firth 1957

“You shall know a word by the company it keeps”

One of the most successful ideas of modern statistical NLP!

When a word w appears in a text, its context is the set of words that appear nearby (within a
fixed-size window).

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

These context words will represent “banking”.

Word embeddings: word2vec

Word embeddings: the learning problem

® Word embeddings are learned representations from text for representing words

e |nput: a large text corpora, V, d

—0.224 —0.124

 V: a pre-defined vocabulary _ | 0.130 o
: : Veat = | _0.290 °g —0.200

¢ d: dimension of word vectors (e.g. 300) 0.276 0.329

¢ Text corpora:

* Wikipedia + Gigaword 5: 6B tokens 0.234 0.290
o Twitter: 27B tokens Uthe = g'ggg Vlanguage = —00%4;1

e Common Crawl: 840B tokens —0.199 0.982

e Output: f:V — R?

Each word is represented by a low-dimensional (e.g., d = 300), real-valued vector

Each coordinate/dimension of the vector doesn’t have a particular interpretation

word2vec

e (Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space

e (Mikolov et al 2013b): Distributed Representations of Words and Phrases and their Compositionality

INPUT PROJECTION OUTPUT
INPUT PROJECTION OUTPUT

w(t-2)

\SUM w(t-1)
w(t)

> wt)| ——»

w(t-2)

wit-1)

w(t+1)

|w(t+1)

k B J

Continuous Bag of Words (CBOW) Skip-gram

Thomas Mikolov

w(t+2)

Skip-gram

Assume that we have a large corpus w,w,,...,w. €V
A classification
Key idea: Use each word to predict other words in its context problem!

Context: a fixed window of size 2m (m = 2 in the example)

P(we—z | we) P(Weiz | W) P(b | a) = given the center word is
P(We—y | we) P(Wesq | We) a, what is the probability that » is a
e context word?
problems turning banking crises as
‘ ') L ') P(- | a) is a probability distribution
outside context words center word outside context words defined over V: Z Pwl|a)=1
in window of size 2 at position t in window of size 2

wevV

Skip-gram

P(we_p | we) PWeiz |We)

P(w,.- P - ,
i, I g o) Convert the training data into:

banking ~crises as .. (into, problems)
: o o / (into, turning)

problems turning

T T

T
outside context words center word outside context words

in window of size2 at position t in window of size 2 (|nto, banki ng)
(into, crises)
P | wp) PWess | We) (banking, turning)
P(we—q | we) P(Weyr | we) (bankmg’ |nto)

(banking, crises)

problems turning into crises as (banl in g as)
9
L Y J ! Y J
\—'—J
outside context words center word outside context words
in window of size 2 at position t in window of size 2

Our goal is to find parameters that can maximize
P(problems | into) X P(turning | into) X P(banking | into) X P(crises | into) X P(turning | banking) X P(into | banking) X P(crises | banking) X P(as | banking)...

Skip-gram: objective function

e For each position t = 1,2,...T, predict context words within context size m,

given center word w,:
all the parameters to be optimized

cO) =11 II Plwess w6y

t=1 —m<j<m,j#0

* |t is equivalent as minimizing the (average) negative log likelihood:

1
J(B)= —Tlogﬁ(ﬁ Z Z log P(wyyj | wy; 0)

t 1 —m<j<m,j#0

How to define Pw,,; | w;6) !

» Use two sets of vectors for each word in the vocabulary
u, € R% vector for center word a, Va € V

v, € R4 vector for context word b, Vb € V

e Use inner product u, - v, to measure how likely word a appears with context word b

Softmax we have seen in multinomial logistic regression!

exp(uwt : va.j) /
P(wiyj | we) =

B Zkev exp(Uy, * Vi)

Recall that P(- | a) is a probability
distribution defined over V...

Skip-gram: objective function

i
1 cxp(uwt "V, j)
J(0) = - E E log -~
t=1

—m<j<m,j#0 ZkEV CXp(uwt ’ Vk')

e |n this formulation, we don’t care about the classification task itself like we do for the

logistic regression model we saw previously.
® The key point is that the parameters used to optimize this training objective— when

the training corpus is large enough—can give us very good representations of words

(following the principle of distributional hypothesis)!

How many parameters in this model?

1 ¢ exp(Uu, * Vu,,,)
J(0) = —= E log :
4 t=1 —m<j<m,j#0 Zk’EV exp(uwt) Vk')

How many parameters does this model have (i.e. what is size of)?
(@) d|V]|

(b) 2d|V| d = dimension of each vector
(c) 2m|V|

(d) 2md|V|

How many parameters in this model?

J(Q) _ 1 Z Z log eXp(u'lUt ’ V'U)t—}-j)

A —m<j<m,j#0 2 _kev €XP(Ww, - Vi)

How many parameters does this model have (i.e. what is size of)?
(@) d|V]|

(b) 2d|V| d = dimension of each vector
(c) 2m|V|

(d) 2md|V| The answer is (b).
Each word has two d-dimensional vectors, soitis 2 X | V| X d.

word2vec formulation

1 & exp(Uw, * Vi, ;)
JO)=—-=>_) log

Q: Why do we need two vectors for each word instead of one?

Q: Which set of vectors are used as word embeddings?

word2vec formulation

exp(Ww, * Vu, ., ;
Z log P(+J)
e Zkev eXp(u'UJt : Vk)

Q: Why do we need two vectors for each word instead of one?

A: because one word is not likely to appear in its own context window,
e.g., P(dog | dog) should be low. If we use one set of vectors only,
it essentially needs to minimize Uqgq - Ugog:--

Q: Which set of vectors are used as word embeddings?

A: This is an empirical question. Typically just u,, but you can
also concatenate the two vectors..

How to train this model?

J(0) = - 1 Z Z log eXp (Uw, * Vi)

L t=1 —m<j<m,j#0 Zk‘GV eXp(uwt ’ Vk')
¢ To train such a model, we need to compute Vaardvark
H v
the vector gradient v/, J(6) =? a
- ¢ Vzebra 4#
e Again, @ represents all 2d | V| model Ugardvark -
parameters, in one vector. Uq

Uzebra

Let’s compute gradients for word2vec

iy
1 exp(uwt "V, j)
J@) = . E g log -

t=1 —m<j<m,j70 > _kev Xp(Uw, - Vi)

Consider one pair of center/context words (%, ¢):

s T (exp(u; - ve))

Zkev exp(us - Vi)

We need to compute the gradient of y with respect to

u,andv,,VkeV

Let’s compute gradients for word2vec

exp(uy - V) 9y _ O(—u,-v,) (log Y ey exp(us - v))
y=—log ou, ou T P
> kev exp(ug - Vi) b t uy
92 key expP(ue-vi)
= ey off ou,
y = —log(exp(uz - vo)) +log(_ exp(uy - vi)) T Trev exp(u; Vi)
keV
=—w-Ve+ log(g exp(u¢ - Vi)) ey Y kv exp(ug - Vi) - Vi

Zkev exp(uy - V)

explus *v
:—VC+ p(: k) Vi

e Lvev exp(u; - Vi)

Recall that

exp(uwt £ th+j)

Zkev exp(uy, * Vi) = —Vv.+ Z P(k | t)v
keV

P(witj | we) =

Let’s compute gradients for word2vec

What about context vectors?

oy _ JPk|t)-Du k=c y=—log(exp(us - ve¢))
ovi | P(k|t)us k#c >_kev exp(ug - Vi)

Overall algorithm

 Input: text corpus, embedding size d, vocabulary V, context size m
* |Initialize u;, v; randomly Vi € V

* Run through the training corpus and for each training instance (t, c):

0 Ay
e Update ut<—ut—na—‘i = =—VC+I§/P(k|t)Vk
9y 9 Pk |t) = Du k=
Updat —vg—n5 —,VkeV i tg SR
e Update Vi < Vi ﬂavk B {P(k|t)ut k4o

Q: Can you think of any issues with this algorithm?

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t,), you need to update v, with
all the words in the vocabulary! This is very expensive computationally.

dy dy (Pk|t)—1us k=c
2 = P(k | t)vy 9y _
Ju, WP g‘: (k [t)vi Ve {P(k | t)u, ik

Negative sampling: instead of considering all the words in V, let’s randomly sample K
(6-20) negative examples. i

0(z) = —————
exp(u; - v.)) 1 + exp(—z)

EkeV eXp(ut : Vk)

softmax: y = —log (

K
Negative sampling: y = —log(o(us - v.)) — Z E;vp(w) log(o(—u; - v;)) ‘
i=1 2 o

Skip-gram with negative sampling (SGNS)

Key idea: Convert the | V| -way classification into a set of binary classification tasks.

Every time we get a pair of words (t, ¢), we don’t predict c among all the words in the
vocabulary. Instead, we predict (t, ¢) is a positive pair, and (t, ¢’) is a negative pair for a
small number of sampled c’.

positive examples + negative examples -

t c t c t c y = —log(o(u; - v.)) Z*‘j«-l(ull()())
apricot tablespoon apricot aardvark apricot seven

apricot of apricot my apricot forever P(w): sampling according to

apricot jam apricot where apricot dear the frequency of words

apricot a apricot coaxial apricot if

Similar to binary logistic regression, but we need to
optimize 1 and v together.

Ply=1|t,c)=0(u;-v.) ply=0|t,d)=1—-0o(us-vy)=o0(—us ve)

Understanding SGNS

y = —log(of ZEJ~p(u>loo o(—u; - v;))

In skip-gram with negative sampling (SGNS), how many parameters need to be
updated in @ for every (t, c) pair?

(a) Kd

(b) 2Kd

(c) (K+ 1)d
(d) (K+2)d

Understanding SGNS

K
y = —log(o(u;-ve)) — Y Ejopu)log(o(—u; - v;))
1=1

In skip-gram with negative sampling (SGNS), how many parameters need to be
updated in @ for every (t, c) pair?

(a) Kd
(b) 2Kd
(c) (K+ 1)d

d) (K+2)d
@) The answer is (d).

We need to calculate gradients with respect to u, and (K + 1) v;
(one positive and K negatives).

Evaluating word embeddings

Extrinsic vs intrinsic evaluation

Extrinsic evaluation

® Let’s plug these word embeddings into a real NLP system
and see whether this improves performance

® Could take a long time but still the most important
evaluation metric

Intrinsic evaluation
® Evaluate on a specific/intermediate subtask
® Fast to compute

® Not clear if it really helps downstream tasks

f

(

ML model J

bttt

I

don’t like this movie

Extrinsic evaluation

?
[ML model]
b 44ty

I don’t like this movie

A straightforward solution: given an input sentence X1,Z9,...,Zp

Instead of using a bag-of-words model, we can compute vec(z) = e(z1) +e(z2) + ... +e(zy)

And then train a logistic regression classifier on as we did before!

There are much better ways to do this e.g., take word embeddings
as input of neural networks

Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353
353 pairs of words with human judgement
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

tiger cat 7.35
tiger tiger 10
book paper 7.46
computer internet 7.58 v u; - Uuj
cos(ui, uj) = .
plane car 577 l|will2 % ||u;||2
professor doctor 6.62
stock phone 1.62
stock CcD 131
stock jaguar 0.92

Cosine similarity:

Metric: Spearman rank correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Intrinsic evaluation: word similarity

Model Size [WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 256
SVD-S 6B | 565 71.5 71.0 53.6 34.7
SVD-L 6B | 657 727 75.1 56.5 37.0
CBOW' 6B | 572 656 682 57.0 325
SG" 6B | 62.8 652 69.7 58.1 372
GloVe 6B | 65.8 727 77.8 539 38.1
SVD-L 42B| 740 764 74.1 583 399
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 68.4 79.6 754 594 455

SG: Skip-gram

Intrinsic evaluation: word analogy

Word analogy test: a: a* :: b: b*

b* = arg max cos(e(w), e(a™) — e(a) + e(b))

semantic syntactic

Chicago:lllinois ~ Philadelphia: ? bad:worst ~ cool:?

More examples at http://download.tensorflow.org/data/questions-words.txt

Metric: accuracy

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Intrinsic evaluation: word analogy

Model Dim. Size | Sem. Syn. Tot.
ivLBL 100 1.5B | 559 50.1 532
HPCA 100 1.6B | 42 164 108
GloVe 100 1.6B | 67.5 543 60.3
SG 300 1B | 61 61 61
CBOW 300 16B | 161 526 36.1
vLBL 300 1.5B | 542 648 60.0
ivLBL 300 1.5B | 652 63.0 64.0
GloVe 300 1.6B | 80.8 61.5 70.3
SVD 300 6B | 63 81 73
SVD-S 300 6B | 367 466 42.1
SVD-L 300 6B | 566 630 60.1
CBOW' 300 6B | 63.6 674 65.7
SG* 300 6B | 73.0 66.0 69.1
GloVe 300 6B | 774 670 717
CBOW 1000 6B | 573 689 637
SG 1000 6B | 66.1 65.1 65.6
SVD-L 300 42B | 384 582 492
GloVe 300 42B | 81.9 69.3 75.0

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

